]

HUMAN-COMPUTER INTERACTION, 1995, Volume 10, pp. 1-37
Copyright © 1995, Lawrence Erlbaum Associates, Inc.

Living Design Memory:
Framework, Implementation,
Lessons Learned

Loren G. Terveen, Peter G. Selfridge,
and M. David Long
AT&T Bell Laboratories

ABSTRACT

We identify an important type of software design knowledge that we call
community-specific folklore and discuss problems with current approaches to manag-
ing it. We developed a general framework for a living design memory, built a design
memory tool, and deployed the tool in a large software development organization.
The tool effectively disseminates knowledge relevant to local software design
practice. It is embedded in the organizational process to help ensure that its
knowledge evolves as necessary. This work illustrates important lessons in build-
ing knowledge management systems, integrating novel technology into organiza-
tional practice, and carrying out research-development partnerships.

Loren G. Terveen is a computer scientist with interests in organizational mem-
ory, human-computer collaboration, and cooperative work; he is a Member of
Technical Staff in the Human-Computer Interface Research Department of AT&T
Bell Laboratories. Peter G. Selfridge is a computer scientist with interests in
organizational knowledge, effective knowledge delivery, and graphical tools; he is
a Member of Technical Staff in the Artificial Intelligence Principles Research
Department of AT&T Bell Laboratories. M. David Long is a computer scientist
with interests in the design process and design support tools; he was a Member of
Technical Staff in the International Switching Customer Business Unit of AT&T
Bell Laboratories at the time this work was done and now is a Senior Systems
Engineer for Cadre Technologies.

2 TERVEEN, SELFRIDGE, LONG

CONTENTS

1. INTRODUCTION
2. THE KNOWLEDGE MANAGEMENT PROBLEM IN LARGE-SCALE
SOFTWARE DEVELOPMENT
3. AFRAMEWORK FOR LIVING DESIGN MEMORY
4. THE DESIGNER ASSISTANT-A DESIGN MEMORY TOOL
4.1. Evolving a Prototype
4.2. From Prototype to Deployed Tool
4.3. Technical Description of DA
4.4. How DA Knowledge Has Evolved
5. RELATED WORK
6. DISCUSSION
6.1. Lessons Learned
6.2. DA Status and Evaluation
6.3. DA Limitations and Future Work
7. CONCLUSIONS

1. INTRODUCTION

Our research is aimed at improving the effectiveness of large-scale
software development, a notoriously difficult and expensive activity.
Several factors contribute to this situation. Software development is a
new discipline; this leads to rapid change in languages, tools, and
methodologies. Many individual software constructs and components
can be composed to build large systems; this leads to systems that
perform very complex tasks, are built by many people, and are beyond
the understanding of any single person. Software is a highly malleable
medium; this makes change possible, and market pressures make
change likely.

Large-scale software development is a knowledge-intensive activity.
The knowledge required for effective software development is vast, com-
plex, heterogeneous, and evolving. Much of the knowledge required to be
a successful developer in a particular organization is community specific,
concerning the existing software base, the application domain, local pro-
gramming conventions, and the expertise of particular individuals. This
knowledge typically is managed as folkloreit is informally maintained and
disseminated by experienced developers. This process is ineffective (not
everyone gets the knowledge he or she needs, inefficient (communication
of knowledge, whether in formal meetings or informal consulting, comes
to take up more and more time), and fragile (loss of key personnel can
mean loss of critical knowledge).

LIVING DESIGN MEMORY 3

We addressed the problem of managing design knowledge in the con-
text of a large AT&T software development organization. The goal of our
work was to construct a system for recording and effectively disseminating
folklore design knowledge throughout the organization. We aimed to
improve both the software product and the software development process
and to achieve a better understanding of the interplay and potential
synergy between technology and organizational processes.

We developed a general framework for providing folklore knowledge,
constructed a system that instantiates the framework, and deployed the
system in the organization. Our system is called the Designer Assistant (DA).
It has been in use since October 1992. It has been used hundreds of times
by software developers and has gone through several versions; most
important, its knowledge has evolved as usage revealed incomplete or
incorrect knowledge. It thus is an important example of a living design
memory. Integrating the system into the organization’s design practice was
key in making it living. Keeping organizational memory up-to-date and
relevant is a big challenge in today’s competitive business climate; how-
ever, many approaches to managing information neglect the critical factor
of knowledge evolution. Our approach also significantly extends previous
approaches for delivering design assistance, capturing design rationale,
and representing organizational information; detailed comparisons are
made in Section 5.

The primary lesson of this work is that technology and organizational
processes are mutual, complementary resources. We have found that
successful integration of new technology into an organization depends on
developing the technology in coordination with existing practice and
processes. An organization’s internal design, patterns of coordination,
information flow, local culture, and technology must be integrated into a
coherent, overall solution. Technology-process integration is a key en-
abler of knowledge evolution. Other related lessons include:

+ The pragmatics of knowledge use are critical. Simply recording facts
is not enough,; issues such as where in the process knowledge is to be
accessed, how to access relevant knowledge from a large informa-
tion space, and how to allow for change also must be addressed for
a knowledge management system to be successful.

« Addressing organizational problems while offering direct benefit to
individuals is key. Although we focus on helping an organization
manage its knowledge effectively—thus alleviating mainly problems
that manifest themselves on an organizational level (e.g., excessive
communication and coordination overhead, duplicated effort, long
product delivery times)-we know that it is individuals who imple-
ment new practices and use new technology, and they need proper
incentives to cooperate with such initiatives (Grudin, 1988).

4 TERVEEN, SELFRIDGE, LONG

* Computer information delivery and computer mediation of human
collaboration must be tightly interwoven. Our approach integrates
the perspectives of cooperative problem solving (Fischer, 1990; Fischer,
Lemke, Mastaglio, & Morch, 1991; Silverman, 1992; Terveen, 1993,
in press), in which a computer system assists a person in performing
a task, and computer-supported cooperative work, in which computer
technology is used to mediate collaboration among humans.

* A research-development partnership is a mutual learning process.
We discovered the limits of the “technology transfer” metaphor;
instead of engaging in a discrete act of transfer, we engage in an
ongoing cycle of problem-solution coevolution that involves re-
search, rapid prototyping, user testing, deployment, and user feed-
back; issues such as access to expertise, knowledge of local culture
and technology, credibility, and ownership become crucial.

In this article, we first explore the knowledge management problem in
more detail and discuss challenges to acquiring, maintaining, and dissem-
inating design knowledge. Then we describe a framework for integrating
a design memory tool into a software development process. Next we
describe the implemented tool that instantiates the framework, including
the prototype version, its evolution, a technical description of the current
tool, and a discussion of how its knowledge has evolved. Then, after
discussing related work and comparing our approach to other approaches,
we discuss the lessons learned, the current status and evaluation of the
tool, and its limitations and our plans for the future. We conclude with a
short summary.

2. THE KNOWLEDGE MANAGEMENT PROBLEM IN
LARGE-SCALE SOFTWARE DEVELOPMENT

The work described here is a collaboration between an AT&T com-
puter science research organization (represented by Terveen & Selfridge)
and a large AT&T software development organization, the International
Switching Customer Business Unit, or ISCBU (represented by Long).
ISCBU consists of several thousand people who maintain and enhance a
large telecommunications software system, the 5ESS™. The goal of the
collaboration was to address problems in managing design knowledge.

It is important to realize that software development in this organization
never begins “from scratch.” From a high-level perspective, the “same”
hardware and software system has been delivered to many customers over
the last 10 years. In reality, however, there is intensive ongoing develop-
ment centered around maintaining and enhancing the software. Each new
customer has somewhat different requirements; new services and features
are planned and developed; bugs must be repaired. This means that
development always must take into account the existing software base and

LIVING DESIGN MEMORY 5

Figure 1. 1ISCBU design process before introduction of DA.

C Requirements Process)

The Design Process

o)~} =)

thus must be based on knowledge of how things have been done, why they
were done that way, and who did them. A design memory would be
particularly helpful in this type of development situation.

Our work has focused on the design process. This process starts with a
requirements document, originating from a customer request or an internal
source. The requirements document describes a new feature of the soft-
ware in terms of customer needs. It is used by a software developer to
produce a design document, which describes how that new feature will be
implemented and added to the existing software architecture. This design
document then is formally reviewed by a committee of experts. If signifi-
cant feedback is generated in the review, the design process iterates. After
the design document is complete and approved, it is passed to a coding
phase. This process is outlined in Figure 1.

One major problem in the design process is the lack of access to design
knowledge. A particularly important type of knowledge is what we call
community-specific folklore—information that is relevant to the local design
practice and that “you can’t learn in school.” This knowledge involves
things such as real-time and performance constraints (“One real-time
segment shouldn’t take more than 200 msec, or overall performance will
suffer”), properties of the current implementation (“The terminating termi-
nal process is already close to its memory limitation, so you can’t add
much to it”), impact of design decisions on other aspects of the software
(“If you modify the automatic testing process, you'll need to update the
customer documentation”), local programming conventions (“Call the
central error-reporting mechanism if your function gets a bad message”),
and individual and organizational expertise (“Ask Nancy about that; she
knows about local stack space”). This kind of knowledge usually is not
written down; rather, it is maintained and disseminated informally by
experienced individuals.

This form of knowledge maintenance and dissemination is unsatisfac-
tory for many reasons. First, not only are experts difficult to locate when
needed, but individuals also must know who the experts are for their
particular problems. Studies in this organization have shown that success-

6 TERVEEN, SELFRIDGE, LONG

ful developers are those who have effective “expertise networks” and thus
know who to ask about particular problems. This valuable knowledge is a
scarce resource that is acquired only through experience (Curtis, Krasner,
& Iscoe, 1988). Second, experts can spend more time disseminating knowl-
edge than applying their expertise to developing software—laboring under
a sort of expertise tax. Third, knowledge often is generated (e.g., in design,
review, testing, or fault analysis) only to be lost, thus depriving the organi-
zation of a valuable resource and leading to potential duplication of effort
in the future. Fourth, because key knowledge often is known only to a few
individuals, loss of personnel can mean loss of knowledge. Poor manage-
ment and delivery of design knowledge can cause suboptimal designs,
late and costly detection of errors, long delivery times, and personal
frustration.

ISCBU has taken various steps to improve its software development
process, including instituting various quality initiatives (Colson & Prell,
1992). One aspect of this approach is the precise description of software
processes in terms of sequences of steps, suppliers and customers, and
inputs and outputs (as in the design process shown in Figure 1). The
process movement is relevant to our project because any technological
solution to the problem of managing design knowledge will be deployed
in the context of the existing design process and must be appropriately
integrated with the process. Another benefit for our project is that techni-
cal people are empowered to improve their processes, and Long was the
technical leader of the design process management team.

We note one caveat about defining organizational processes—the dan-
ger of overregimentation. Suchman’s (1983) analysis of office work
showed that procedures can be defined in too much detail and that such
procedures are less help than hindrance to people in performing their
work. ISCBU has moved away from its initial tendencies toward excessive
regimentation. Processes define macro-scale patterns of coordination,
milestones, and deliverables—the what, not the how. Designers have great
discretion in how they accomplish their work; for example, no single
design methodology or computer-aided software engineering (CASE) tool
is mandated.

ISCBU tried explicitly to address its knowledge management problem
by documenting knowledge in structured text files. Even if all relevant
facts could be captured in this manner, this approach still is inadequate for
three reasons:

* The documents are not organized for efficient access. Without ade-
quate indexing, the resulting information base is simply too large to
be very useful (busy people, including software developers, will not
read large documents that are not immediately relevant to their
current task).

LIVING DESIGN MEMORY 7

* There is no way to ensure compliance. That is, it is impossible to be
sure that developers and reviewers have consulted all the informa-
tion that is relevant for a particular design problem.

* There is no natural way to ensure evolution of the documents.
Documents will become incomplete and incorrect over time, and
the programming constructs, requirements, constraints, and meth-
odologies they describe all will evolve.

From our perspective, the crux of the problem is that the on-line docu-
ments are not a living design memory. They are not well integrated into
organizational practice and do not address how knowledge is to be used
and changed.

We can build on the preceding discussion to state some requirements
for a design memory tool:

* The pragmatics of tool use must be specified, including the points in
the design process at which it is to be used and the purposes for
which it is intended.

* Designers must be able to access task-relevant knowledge efficiently.

* Designers must be able to apply the knowledge they get from the
tool, incorporating it into their designs easily and quickly.

* The organizational processes should be structured to encourage tool
use and check whether the tool was used and the advice followed.

* Additions and modifications to the advice need to be captured.
Advice never is complete, circumstances of the organization change,
and new knowledge is generated.

3. A FRAMEWORK FOR LIVING DESIGN MEMORY

We have developed a framework for integrating a design memory tool
into a software development process that addresses the requirements just
stated. The framework includes both technical and organizational aspects
in a tightly interwoven manner.

Technically, our framework specifies a design knowledge tool, follow-
ing the paradigm of interactive assistance for software development (Rich
& Waters, 1990). The tool has two components—a design knowledge base that
records relevant information and an interface that provides access to the
knowledge base. Such a tool (ours is DA) must be designed by researchers,
domain experts, and potential users working together. In our framework,
we assume that the design memory tool augments an existing process that
uses informal design artifacts (i.e., text documents). Therefore, the tool
provides textual advice to developers, and it is their responsibility to
modify their designs in accordance with the advice or to explain why the
advice does not apply to their designs. Attempts to formalize design
artifacts through the use of knowledge-based tools (Bailin, Moore, Bentz,

8 TERVEEN, SELFRIDGE, LONG

& Bewtra, 1990; Johnson, Feather, & Harris, 1991; Mark, Tyler, McGuire,
& Schlossberg, 1992; Ramesh & Dhar, 1991) are complementary to our
approach.

One might assume that a complete knowledge base can be built up-
front, before system use begins. Although certainly the knowledge base
must contain some information before system use can begin, we claim that
in a real-world, large-scale design memory, knowledge engineering must
occur throughout the life span of the memory. There are three reasons we
make this claim. First, recent work in both social science (Lave, 1988;
Suchman, 1987) and artificial intelligence (AI; Clancey, 1991; Gaines,
1989; Winograd & Flores, 1986) has argued that the “knowledge” encoded
in Al knowledge bases is at best a partial, finite rendition of human
knowledge. Thus, a knowledge base is always subject to additional refine-
ment and reinterpretation, and users of a knowledge base might need to
contact the builders of the knowledge base to understand fully the infor-
mation it contains. Second, the circumstances of the software organization
that are modeled in the knowledge base change. The software base
changes—indeed, this is the goal of the design activity-as new customer
requirements are met. Hardware and software technology advances. Faults
are observed in the running software and must be fixed. All the other
assumptions and constraints are subject to continual, if slow, evolution.
Third, different knowledge domains will “mature” at different times; for
example, the architecture team might be ready to encode its knowledge a
year before the database team is. Large-scale, real-world knowledge engi-
neeri)ng is inherently incremental (Shipman, 1993; Shipman & McCall
1994).

In response to these issues, we extend our framework in three ways.
First, it must support two types of “knowledge evolution”—knowledge up-
date, which is the elaboration and evolution of the design knowledge base
as the tool is used and evaluated, and knowledge addition, which is the
addition of new knowledge generated during development activities and
as new domains mature. Second, computer assistance must be backed up
with human collaboration; when developers access knowledge in the
design memory, it should be easy for them to contact the people responsi-
ble for encoding that knowledge.

We consider the second point first. We take a simple approach to
integrating computer assistance and human collaboration, based on the
notion of knowledge “ownership.” We require that every piece of informa-
tion in the knowledge base be tagged with its owner—the individual who
articulated the information and who is responsible for it being in the
knowledge base. Then, when advice is delivered to a developer, the
developer can find out the advice owner, including e-mail address and
phone number. If developers do not understand the advice or need more
information, they are directed to the person best able to help. This begins
to turn important networking knowledge—which currently is a scare, infor-

LIVING DESIGN MEMORY 9

mally managed resource—into an organizational asset. Notice that the
ownership relationship is itself knowledge that must evolve over time as
people leave the organization or their responsibilities shift. We next de-
scribe techniques that can be used to maintain this and other types of
knowledge.

Oour first step to support knowledge evolution is to add a KB [knowl-
edge base] update-and-maintenance activity to our framework. This pro-
cess institutionalizes knowledge engineering as an ongoing activity in
the design process. It takes as input requests and suggestions for modi-
fications or additions to the knowledge base, and it produces changes
or updates to the design knowledge base in response. The person or
persons who perform this process are DA knowledge engineers. They do
their work in close collaboration with developers, domain experts, and
customers.

We take several steps to support knowledge update. First, DA collects
comments from users at the end of each session. Second, DA automatically
produces a trace of each session, and designers annotate their design
documents to include the trace. This allows those aspects of the design that
were influenced by the advice to be commented on (and disagreed with)
during design review, thus making the advice itself an object of review.
This also means that, if designers choose not to follow advice, they must
explain why not. Their reasoning can be judged and, if valid, will lead to
capturing exceptions to or modifications of existing advice. Notice that
traces do not become part of the permanent knowledge base; rather,
examining the traces, which record developers’ interactions with DA,
might lead to changes to the knowledge base. To sum up, designers and
reviewers encounter the knowledge encoded in DA in the context of actual
design situations. These situations are likely to trigger tacit knowledge that
might modify or extend the information in DA. We provide several means
by which designers and reviewers can articulate this information and input
it to the KB update-and-maintenance process.

Next we consider how to support the addition of new knowledge to DA.
We must first define potential sources of new knowledge. So far, we have
identified the following:

* Fault analysis. When a fault is observed in the running software
system, and it is determined that the fault was due to a design error,
root cause analysis is performed to determine the underlying cause of
the fault; this information then can be encoded in DA so that the
situation that led to the fault can be detected and the fault avoided
in the future.

* Process improvement. As part of the ongoing quality efforts, the design
process management team continuously analyzes data about the
process; they can identify “opportunities for improvement,” which
can be encoded as information in DA.

10 TERVEEN, SELFRIDGE, LONG

* Expert initiative. As already mentioned, knowledge acquisition in a
large organization is inherently incremental; as experts in a particu-
lar domain articulate their knowledge to a suitable point, or as they
become aware that DA is an appropriate mechanism for communi-
cating their knowledge, they can initiate the process of engineering
their domain.

* Customer impact. Downstream processes that are design customers
can identify effects that design decisions have on their work (e.g.,
certain types of design decisions can lead to difficulties for software
testing); these customers can initiate a knowledge engineering pro-
cess to encode these effects.

In any of these cases, knowledge evolution can be triggered through
informal communication with the DA knowledge engineer or by the use
of standard process improvement mechanisms such as guality improvement
projects or opportunities for improvement (two local mechanisms for continu-
ally improving processes). Again, we find that exploiting mechanisms and
procedures that are familiar to developers in the organization helps in-
crease the likelihood that knowledge evolution will occur, making the
design memory living. The entire KB update-and-maintenance process
is described precisely in an ISO 9000-compliant process description
document.

Finally, we learned that a living system can lead to a living research
project. Although the KB update-and-maintenance process takes care of
updates to the contents of the design knowledge base, use of DA can reveal
shortcomings in the structure of the knowledge base or in the means by
which the knowledge is accessed. New research is then required to address
these problems, leading to a modified representational framework and
interface.

Figure 2 shows the complete living design memory framework.

We conclude this section by summarizing our framework. It is useful to
note that it does not commit us to how information is to be represented or
what sorts of information access and interface techniques should be used.
Rather, it makes clear how the technological aspects of a design memory
must be integrated with and extend existing organizational processes. The
framework specifies the point at which DA is to be consulted and the
components of DA (a knowledge base of information relevant to the
design task and an interface that helps designers access relevant knowl-
edge). The framework specifies a KB update-and-maintenance process
that provides for ongoing knowledge engineering, thus making the design
memory living. Developer and reviewer comments organized around an
annotated design document suggest updates to existing knowledge. Fault
analysis, process improvement opportunities, expert initiative, and cus-
tomer impact analysis lead to the encoding of new knowledge. All the

LIVING DESIGN MEMORY 11

Figure 2. Living design memory framework-ISCBU design process with DA.

Requirements Process
The Design Process
Design Annotated Review Coding
Design Document Process
DA Trace
Fault Analysis
KB Update &
Maint ce Process Improvement
Expert Initiative
Customer Impact
Research Analysis

various types of feedback and the means by which feedback can be
communicated are specified in a formal description of the KB update-and-
maintenance process. DA is embedded in organizational practice so that
knowledge is captured in a public repository, is disseminated effectively,
and evolves as necessary.

4. THE DESIGNER ASSISTANT-A DESIGN MEMORY
TOOL

Our design memory tool, DA, contains significant folklore knowledge
about design in ISCBU. The initial “seed” knowledge base of DA has
grown to include about 10 main domains and the results of several fault
analyses and has evolved in response to many user comments. DA guides
developers through a dialogue concerning characteristics of their design
and provides advice based on the answers. DA is integrated into the
development process, and all levels of the organization, from high-level
management to developers, view the tool favorably. Work continues on
engineering new domains, and user feedback constantly is received. In
short, DA is living. In this section, we trace the evolution of the tool, give
a technical description of its current state, and describe how its knowledge
has evolved.

12 TERVEEN, SELFRIDGE, LONG

4.1. Evolving a Prototype

One important factor in both the design and deployment phases of our
project was Long’s organizational standing. He was an experienced devel-
oper and the engineer responsible for the design process management
team. This ensured our access to domain experts, potential users, and
management.

First we identified a knowledge domain in which to construct a proto-
type. We selected an error-handling mechanism, “asserts,” that is critical
to the fault tolerance of the software system. An assert is used to signal an
illegal state and is implemented as a macro call with a number of argu-
ments that have various effects on the system. For example, one value of
one argument initializes the processor running the current process. Other
arguments cause the dumping of different kinds of data needed to diag-
nose the problem or schedule a data-checking audit. Thus, a developer has
to make a series of decisions in order to use an assert appropriately. Some
of these decisions are quite complicated, and there are dependencies
among the decisions.

Although limited, this domain still has the following important features.
First, it is a difficult domain. Developers typically do not know when to use
the mechanism, how to use it, or even how to find out about it. This is
especially true of novices in the organization, but even experienced devel-
opers commonly misuse the construct (in fact, many of the existing uses in
the code base are incorrect). Second, there are local experts who have
extensive knowledge about asserts, and this knowledge is managed as
folklore. The experts disseminate this information in a frustrating and
inefficient manner (i.e., one-to-one communication with individual devel-
opers). Third, attempts to document asserts were unsuccessful due to the
compliance and indexing problems mentioned earlier. The asserts domain
is typical of design knowledge in ISCBU, so we believed that focusing on
it in the prototyping process would allow us to address general issues in
design knowledge management.

After choosing the domain, we spent dozens of hours interviewing
domain experts and studying the existing written documentation. We took
a set of several hundred examples of asserts from the code base and asked
the experts to categorize the examples in terms of design attributes, the
design features to which all the uses of the mechanism in each category
responded. The experts did so in two stages, first sorting the examples into
categones, then articulating explicitly what each category had in com-
mon.' This was a very important abstraction step because it meant that the

1. We are grateful to Mike Wish of AT&T Bell Laboratories for first suggesting
this approach.

LIVING DESIGN MEMORY 13

tool interaction could use terms familiar to developers (the design attri-
butes) rather than refer to syntactic features of the construct. Presumably,
developers would not be familiar with the latter vocabulary, as it is
precisely this for which they are getting help.

After several iterations, the experts succeeded in generating a small
number of design attributes with almost complete domain coverage. Each
attribute could be expressed as a yes—no question (e.g., “Does your design
update data in the database?”). Attributes were arranged in a generaliza-
tion hierarchy, with more general attributes subsuming more specific
attributes. Thus, under the previous question might be the additional
question, “Is it possible for dynamic and static data to become
desynchronized?” In other words, the attributes (and corresponding ques-
tions) were arranged in a decision-tree structure. The next, crucial step was
to elicit advice from the domain experts about how to use the assert
mechanism in the situation covered by each design attribute. Some advice
might apply only to very specific design situations (the leaf nodes in the
attribute hierarchy), whereas other advice could apply to more general
situations (interior nodes). The advice was distilled into small units of text
that we call advice items. Indexing by design attribute has proved to be a
very useful way of acquiring and organizing knowledge in this and other
domains. (Selfridge, Terveen, & Long, 1992, gave details about the repre-
sentation of design attributes and advice items in the prototype.)

The next task was to construct a prototype design memory tool. We
used the language CLASSIC (Borgida, Brachman, McGuinness, &
Resnick, 1989; Brachman, McGuinness, Patel-Schneider, Resnick, &
Borgida, 1990) to represent the information we had acquired and devel-
oped a simple dialogue-based interface. Because of the wide variety of
terminals used within the target organization, the tool had to be ASCII
based and independent of any specific window system or platform. The
prototype simply used basic C input and output routines. The interaction
consisted of the tool asking yes-no questions to guide a developer down
the design attribute hierarchy (an interactive classification task); when a
developer responded “yes” to a leaf node in the attribute hierarchy, the
system presented several paragraphs of advice about how to use the
error-handling mechanism for this situation. The advice was computed by
collecting the advice items associated with the leaf attribute description
and all generalizations of that attribute description. (In addition, several
mechanisms for overriding and ordering advice were applied; Selfridge et
al.,, 1992.) One advantage of having the system direct the dialogue was that
it increased the chances of compliance (i.e., that designers would be
exposed to all relevant information). When the interaction was complete,
the tool asked several evaluation questions (e.g., “Was this session useful?”
“Was the level of detail about right, too much, or too little?”) and gave the
user a chance to enter more detailed comments and suggestions. The
technical details of information representation and dialogue management

14 TERVEEN, SELFRIDGE, LONG

are slightly different in the current implementation of DA. We present the
details of the current implementation in Section 4.3.
To summarize, the results of the prototype process were:

* The representational framework organizes information in hierar-
chies of design attributes.

* This framework serves as a useful organizing principle for engineer-
ing new domains. Experts can be guided to formulate the key design
attributes that organize their domain and the advice that should be
delivered for the situation covered by each attribute.

* The framework suggests an interaction technique—organizing dia-
logue as interactive classification, in which designers (a) categorize
their design situations by answering questions posed in terms that
are likely to make sense to them and (b) receive advice about
specialized topics.

4.2. From Prototype to Deployed Tool

We next carried out informal user tests on the prototype. We created a
realistic software design problem and asked half a dozen developers to
write a design section involving the error-handling mechanism. They used
the tool to get advice on how to write the design section. Their reaction
was highly favorable; in some cases, designers asserted that the 20 min
spent using the tool saved from 4 to 8 hr of their time. The reason for this
is that the only other way to access the knowledge presented by the tool
would have been to track down the local experts or search through large
documents, both notoriously time-consuming activities.

Considering these results very positive, we deployed DA in the design
process. That is, we modified the formal process description to include the
steps in “Run the Designer Assistant and append the resulting transcript to
your design document.” We sent e-mail to all the developers in the
organization announcing the availability of the tool. Within 15 days, more
than 85 developers used DA. Their feedback was unexpectedly negative.
Only 38% judged the interaction useful, and only 42% said that the level
of detail of information was about right. These ratings and detailed com-
ments from the users indicated that DA had two major problems. First, it
did not contain enough knowledge—running a tool that contained informa-
tion about just one small domain was more trouble than it was worth.
Second, the interface did not match user expectations—for example, it gave
no guidance in entering legal answers, and the overall structure of the
dialogue was unclear.

Up until that point in the project, our team’s research members, Ter-
veen and Selfridge, worked on designing and implementing the prototype.
However, responsibility for the tool was shifting to Long, who faced the
problems of improving the interface and adding more knowledge. To do

LIVING DESIGN MEMORY 15

so, he reimplemented DA in an internal AT&T system development
environment, the Data Collection System (DCS). DCS is a tool for con-
structing screen-based, menu-driven interfaces. DCS provides much
functionality that helped address user complaints, including input type
checking, ability to revisit and reanswer any previous question, text- and
cursor-based menus, automatic recording of user responses, and output of
a transcript in a convenient database format The reimplementation
illustrates several interesting points:

* Long now “owned” the reimplemented DA—it was a facile tool for
him. This meant that he could maintain both the behavior of the tool
and the contents of the knowledge base easily. To further ease the
task of adding new knowledge, Long designed a simple rule lan-
guage tailored for representing hierarchies of design attributes and a
compiler that produces DCS code from the rules.

* DCS was a known resource in the repertoire of the developers but
not the researchers. We learned that making a new tool meet user
expectations is facilitated by exploiting the system development
environments available in the target user community. More gen-
erally, this highlighted for us that a research-development part-
nership involves mutual learning (Greenbaum & Kyng, 1991) and
that the details of the learning required might be impossible to
anticipate.

+ Changing the underlying technology from CLASSIC to DCS in-
volved some trade-offs. Gains in ease of interaction and ownership
by Long came at the expense of great loss of representational power.
However, the CLASSIC prototype focused on elegant representa-
tion and efficient computation of advice, whereas experience
showed that it was more important to be able to manage structured
hierarchical dialogues effectively, and DCS was much better at this.
This illustrates another general lesson. Any design project inevitably
involves trade-offs. Those members of the design team who actually
implement the design have great influence in deciding how the
trade-offs are resolved (Ehn & Kyng, 1991). Research and develop-
ment members of a joint design team might well judge how to
resolve particular trade-offs differently. Thus, trade-offs that have
not been explicitly articulated and discussed might well become the
occasion for redesign or reimplementation as ownership of a system
shifts from researchers to developers.

* The reimplementation shed new light on what had been accom-
plished thus far in the project. We came to see the CLASSIC
prototype as a “running specification” of the behavior for an ade-
quate tool. In a subsequent partnership undertaken by Terveen and
Selfridge with ISCBU (Terveen & Selfridge, 1994), the participants
agreed up-front that a running specification would be the result.

16 TERVEEN, SELFRIDGE, LONG

* Our view of our partnership and our work changed somewhat—we
came to see that we had engaged in design after use. The difficulty
of testing new technology under conditions that approximate the
everyday working conditions of a large software development orga-
nization was highlighted. So, we will plan for some amount of
redesign in future partnerships. This gives us more reason to reject
the technology transfer metaphor-we see ourselves engaged in a

living research project paradigm, in which actual system use reveals
new problems.

When the reimplemented DA was deployed, complaints about the
interface decreased significantly, and user feedback began to improve (see
Figure 10). In the remainder of this article, we discuss the current im-
plementation—its management, cost, status, and evaluation.

4.3. Technical Description of DA

To this point, we have concentrated on tracing the development history
of DA and pointing out lessons we have learned along the way. We now
present a more detailed technical description of DA in its current form.

The representation of information in DA can be seen either as an
extended form of decision trees or as a simplified version of production
rules. We use the first perspective to explain the representation. Each
design attribute describes a category of design situations and can be
expressed as either a yes-no or multiple-choice question. Each answer can
have an associated piece of advice’ and can lead to another design attri-
bute. Figure 3a illustrates a design attribute with two values. The prototypi-
cal case is a yes-no question. We use one other construct to form
dialogues, iterate (Figure 3b). An iterate construct forms a sequence of
design attributes for presentation. Last, we note that information in general
is structured not as trees but as directed acyclic graphs. We use the term
shared attribute (or shared question) to refer to an attribute that has more than
one parent.

DA interaction consists of the system guiding the user down the design
attribute hierarchy. For an iterate node, the system visits each child in
left-to-right, depth-first order. For all other design attributes, the system
presents the attribute’s question and possible answers and then receives
the user’s answer. Any advice associated with that answer is given, and
then the dialogue continues down the children of the selected answer.

2. In the currently deployed version of DA, advice consists only of text. How-
ever, in our new research prototype (to be discussed), the notion of “advice” is
expanded to include arbitrary system actions (e.g., sending e-mail, starting execu-
tion of a tool, and displaying graphics or images).

LIVING DESIGN MEMORY 17

Figure 3. Basics elements of DA information representation.
Q-0

ans-1 ans-2

ITERATE
ITERATE VN
Advice-1 Advice-2 ’4\ Q-0 Q-1
Q* 1 Qt Q0 Q-1 eeese Q-N Q-2 Q-3 Q4
(a) A (binary) CHOICE node (b) An ITERATE node (c) a shared question

Figure 4. Top-level structure of DA knowledge base.

Select a design phase

high-level design

low-level design

Welcome and Welcome and Welcome and
orientation message orientation message orientation message
iterate iterate iterate

System Resources Retofit Impact Asserts

Special Scenarios Customer Documentation Impact Recent Change and Verify
Retrofit Impact Interfaces
SM200 Design Considerations Database Trigger Functions

Customer Documentation Impact

When a shared question is encountered a subsequent time, the system uses
the previous user answer to that question. There are several features for
controlling the dialogue, including recapping, which is viewing a list of all
the questions and answers in the session and going back to any point and
revising the answer, and backing up, which is returning to the previous
question and revising the answer.

The top-level division of knowledge in DA is by the type of design in
which the developer is currently engaged. Then, a series of relatively
independent domains is represented. Figure 4 gives an overview of the
top-level structure of the knowledge base.

Figure 5 shows the system resource domain (under the high-level design
phase) in more detail, giving some idea of the size and complexity of a
typical domain. (Figure 5 still simplifies the domain slightly for ease of
presentation; e.g., only a summary of each piece of advice, not the actual
text, is presented.) The system resource domain contains 16 design attri-
butes, with a maximum depth of 4, and 6 pieces of advice. The terms in

Figure 5. Example DA knowledge domain-system resources.

iterate
(= Are you creating a new system or terminal process?

yes
L’Lndvice: setting process prioritics; contact person; reviewer recommendation]

8 Does your design require passing data between processors?

I yes
iterate
Will you be passing only a few bits (between specified processors)?
L=

Does your design require updates
to the MCC pages?

Does your design require "re-reading” to relevant document

Il“' Advice: consider the use
—{ of "Data Delivery”; pointer

data from another processor?

L=

8 Will part of this design be delivered as a Software Update?
yes

advice: includes pointer to relevant document I

- Does this development require changes on the AM processor?
Yes
l—> hdanmadondiskorﬂuufmdoﬁ-swhch&omOSsyﬂzm?

yes
Lb Is this a development for Release SeeS.1 or eartier?

yes
L» iterate

Are you adding & new state
to an existing BMF datatype?

7** ['Advice: determine following
data requirements; contact info.
Are you adding a new application
to an existing BMF datatype?

I 7" ['Advice: determine following
data requirements; contact info.

—->DoesmisdevelopmenuequirechnngeﬂothePGorDN.TM. UP, or WE subsystems?
this is a

yes
L.» Will development within a Paged Product be required? simplificasion

of the actual
|2 srcure
Advice: certain kinds of global data cannot be accessed

figure 6

LIVING DESIGN MEMORY 19

Figure 6. Example DA question and advice.

QUESTION:

Are you adding a new state in an existing
Backup Management Facility (BMF) datatype?

Answer yes or no (y/n): y

7 = help for question

AR = recap AB = go back to last question
AP/AN = scroll question AL = redraw screen
ADVICE:

Please communicate the following data needs to the Backup
Management Facilities (BMF) Team. (The BMF team is
currently Juliec Rypka and Carlene Smith).

1. Datatype name — The name of the BMF data type that the
new state is needed for.

2. Datatype states - OPEN, READY, and SAFE are always
required. Also, which states can BMF delete data files

from if disk space is full. The directory .etc is also
required. These correspond to the fsb forms in the SG for
the datatype. Currently defined optional states are:
i. TAPIP and TAPED - required for tape writing

ii. DLIP - required for BMF/DDMEF file transfer

protocol use.
iii. FTDLIP - required for AFT file transfer protocol use

3. When (what load) does the work need to be completed

Advice-ID: [resource-8]

the questions (e.g., software update, PG or DN subsystem, and the AM processor)
are familiar to ISCBU developers (however, the wording of the questions
has evolved in response to user feedback). Advice is a combination of
specific information (e.g., that in certain design situations, certain types of
global data cannot be accessed) and pointers to documents and individu-
als. Figure 6 illustrates the appearance of DA screens and shows a system

20 TERVEEN, SELFRIDGE, LONG

question and the advice that is presented when a user answers “yes” to the
question.

4.4. How DA Knowledge Has Evolved

We now consider in a bit more detail how the knowledge evolution
process has worked in practice. To limit the scope of the discussion, we
summarize feedback received between two relatively mature DA versions.
We also present a few specific examples of feedback.

The KB update-and-maintenance team identified more than 25 issues
that came either from DA users or from experts who suggested new
knowledge domains to be encoded. Of these issues, 10 were rated as the
highest priority. These issues ranged from extremely general (“Improve
help messages” and “Address how to use the tool for a design with multiple
authors”) to very specific (“Clarify ambiguous use of the term data” and
“Update the members of the GFS/BMF team”). Of the high-priority issues,
8 came from DA user feedback, and 2 came from domain experts, who
wrote “opportunities for improvement” that proposed knowledge they
thought should be included in DA. Some issues required adding new
knowledge to DA; others required modification of existing knowledge.

Knowledge in DA can be divided into three categories: expert knowledge,
specialized areas of design knowledge with which most designers are
unfamiliar, like asserts; impact knowledge, how characteristics of a design
affect another area of the software or another process; and fault prevention
knowledge, how characteristics of a design could lead to a fault and how the
fault can be avoided. This division is motivated by differences in how the
knowledge is acquired—the different types of knowledge are used in the
same way. Expert knowledge is acquired from design process subject
matter cxperts, upact kuvwledge from downstream customers ot design,
and fault prevention knowledge from root cause analysis of software faults.

One expert domain that was added was DIOP [disk input/output pro-
cess] scenarios. Considering the process by which this domain was added
nicely illustrates the knowledge evolution process. First, several develop-
ers wrote an “opportunity for improvement” specifying that information
on this domain should be added. Next, the developers met with the DA
knowledge engineer to discuss how the domain should be encoded. The
DA knowledge engineer then proposed a representation of the domain.
The representation specified the location of the domain in the existing
knowledge base (i.e., under which design attribute its root design attribute
should be placed). The structure of the DIOP scenarios domain was
roughly as shown in Figure 7. (We only indicate where advice is delivered;
we do not show the actual advice. Each piece of advice consists of one or
two sentences.)

The DA knowledge engineer communicated this structure to the do-
main experts and assigned one of them to be the owner of each advice

LIVING DESIGN MEMORY 21

Figure 7. DIOP scenarios domain.

Are you working on the Administrative Module? I

yes

Does your design directly access the Disk I/O Process? I

yes Advice: scenarios-5
el fterate

.| Are you writing backup information to disk?

Advice: scenarios-6

_.Eue you writing buffered information to disk?

Advice: scenarios-7

Are you reading information from disk or
L | i this application loaded from disk or unloadsd
from memory periodically?

Advice: scenarios-8

item. The advice owner responded by suggesting some clarifications in the
language used in the questions and advice, pointing out several modifica-
tions to the content of the advice, and identifying some new information
to be communicated. Finally, the revised knowledge was encoded in DA.

This example illustrates important properties of the DA approach. First,
knowledge engineering has been institutionalized as an ongoing part of the
design process, and experts are willing to work on engineering their
domains. Second, knowledge engineering is a collaborative process be-
tween the DA knowledge engineer and domain experts. Third, it is im-
portant that the representation of advice used in DA is relatively simple
(e.g., can be communicated in e-mail messages in the form of nested
if-then statements). This makes it a good medium for communication
between domain experts and the DA knowledge engineer—they under-
stand easily what advice means and how to modify and add to it.

5. RELATED WORK

In this section, we compare our living design memory approach to
other related work, bringing out important characteristics of our frame-
work by contrast. First, AI and expert systems work also is aimed at
capturing knowledge in particular domains. These systems contain a
knowledge base and a reasoning component that computes the desired
inferences—for example, relating patient symptoms to disease classifica-
tions (Shortliffe, 1976) or customer computer orders to a configuration
diagram (McDermott, 1982). The original goal of expert systems work was

22 TERVEEN, SELFRIDGE, LONG

to produce automated systems. However, automation requires a complete
formalization of knowledge in the target domain, which is rarely possible.
Thus, most existing expert systems function as interactive assistants. This
change of emphasis also is true for the application of Al to software design.
The early focus was on automatic programming (Barstow, 1979). Despite
some interesting successes (Kant, Daube, MacGregor, & Wald, 1991;
Smith, 1991), the field of knowledge-based software engineering has
shifted its emphasis to creating systems that assist people in designing
software (see the annual Knowledge-Based Software Engineering Confer-
ence); this trend also appears in Al approaches to design in general (e.g.,
the annual International Conference on Al in Design). Our work is part of
this trend. We also have exploited the power of delivering informal
information like “Ask Nancy about that; she knows about local stack
space.” This sort of information helps to reduce the high communications
overhead in large organizations by making some information available
through DA and guiding developers directly to the relevant expert when
additional communication is required. We also have integrated the use of
knowledge into an organizational process by, for example, specifying
points in the process when DA should be consulted, defining feedback
sources, and institutionalizing knowledge engineering in the design
process.

Second, our framework responds to many of the points made by Curtis
et al. (1988) in their discussion of large software development projects.
Curtis et al. stated that software development must be seen as a learning
and communication process; they recommended that software develop-
ment tools facilitate the enterprise-wide sharing of knowledge, accommo-
date change as a normal and expected process, and serve as media of
communication for integrating people and information. We identified a
particular type of knowledge to be managed, developed a tool for manag-
ing and a heuristic for acquiring it, and constructed a framework for
integrating the tool into the software development process.

Software process modeling research (Curtis, Kellner, & Over, 1992;
Krasner, Terrel, Linehan, Arnold, & Ett, 1992) has addressed some of the
issues raised by Curtis et al. (1988). Processes are represented formally,
often through the use of a process modeling environment. After a process
is represented, automated support can be provided for carrying it out, for
keeping track of progress toward completion, and for analyzing the pro-
cess for potential improvements. This work is complementary to ours. An
organizational process can be improved both by formal representation
and computational support for enactment (as in the process modeling
approach) and by better management of the knowledge needed to perform
the process (as in the DA/organizational memory approach). In addition,
because introducing an organizational memory system might require
changes to a process, an explicit representation of the process can make
such changes easier.

LIVING DESIGN MEMORY 23

We devote the remainder of this section to comparing our work to
other approaches to organizational memory. One idea that has been the
focus of much research attention is design rationale (Bailin et al., 1990;
Conklin & Burgess Yakemovic, 1991; Fischer, Lemke, McCall, &
Morch, 1991; Franke, 1991; Kunz & Rittel, 1970; Ramesh & Dhar 1991).
Design rationale captures the reasons behind the design, including issues
that were considered, alternative resolutions of these issues, and argu-
ments for and against the different resolutions. Many approaches to
capturing and using design rationale exist, ranging from very formal
Al-type representations (Franke, 1991; Ramesh & Dhar 1991) to rela-
tively informal text or hypertext representations (Conklin & Burgess
Yakemovic, 1991). Work reported by Conklin and Burgess Yakemovic
(1991) in applying the IBIS (Kunz & Rittel, 1970) methodology to a
software development project is most relevant to the concerns of the
present article Conklin and Burgess Yakemovic developed a simple
textual form of IBIS (itIBIS) that was suitable for use on the technology
of the development organization with which they were working. The
development project successfully used this method to record and pres-
ent information relevant to their evolving design. One important rea-
son why the IBIS technology was effective was that it incrementally
improved an existing task (i.e., participants in a design project already
kept track of relevant information with handwritten notes) instead of
creating a whole new task. The new technology offered some payoff
with minimal cost of adoption and disruption of existing organizational
practice.

We addressed the same general issue-how to develop a system for
managing design knowledge that could be integrated into existing organi-
zational practice. However, the folklore knowledge with which we were
concerned is more general than design rationale, and it must be used and
modified not primarily in one design project, but over time in many
projects in the ISCBU organization. We focused on integrating DA not just
into existing practice, but also into existing organizational processes,
modifying these processes as necessary. Specifically, we instituted knowl-
edge review and maintenance processes to ensure the evolution of the
knowledge. We also share Conklin and Burgess Yakemovic’s (1991) com-
mitment to analyzing incentives for and obstacles to adopting new technol-
ogy (Grudin, 1988). DA is quick and easy for developers to use—no
training is required, and the average session lasts about 10 min-and it
offers substantial benefits (e.g., developers do not have to read long
documents, waiting time is reduced, and review meetings can be smaller
and thus scheduled more quickly; reviewers can be satisfied more easily).
Domain experts have a larger burden, because they are asked to work with
the KB update-and-maintenance process to encode their domains. How-
ever, we have found that experts are eager to do so because it reduces the
amount of time they spend consulting, lets them accomplish other work,

24 TERVEEN, SELFRIDGE, LONG

and helps to ensure that design rules they think are important are commu-
nicated throughout the development community.

At Hewlett-Packard, Berlin, Jeffries, O’Day, Paepcke, and Wharton
(1993) developed a group memory system called 7 eamlinfo, containing
information relevant to a small group of researchers and software develop-
ers. Information in TeamlInfo consists of e-mail messages grouped into one
or more categories. The categories were developed by the group and
included one category for each of the group’s two main projects and other
categories such as events, people and projects, topic tracking, and “tech-
nology hacks.” TeamlInfo was seeded initially with messages from the
individual mail folders of group members. Group members extend the
memory by carbon-copying TeamlInfo on an e-mail message. Messages
are classified through a combination of methods-manual (the sender
selects at least one category to which the message belongs) and automatic
(the system does pattern matching on words and phrases that indicate
particular categories). Messages also are organized in a conversational
structure, with each message pointing to (a) the message to which it
responded and (b) all messages that responded to it. Users retrieve infor-
mation by browsing and querying the memory.

Berlin et al. (1993) offered an interesting analysis of problems that arise
as people change from using individual filing (e.g., in their personal mail
folders) to group memory. For example, “purists” want a small number of
very general categories, whereas “proliferators” prefer a large number of
very detailed categories. A related distinction involves whether people
want to invest in more work at message storing time (giving a very
accurate and detailed categorization of a message) or at retrieval time
(constructing a very precise query and being ready to try different queries
and browse through messages). Such differences in individual preferences
can make the use of group memory difficult. For example, people who
prefer to put more work into retrieval might not put as much into catego-
rizing messages at storage time—frustrating people who want to find these
messages but who prefer to put more work into initial categorization.

There are several notable differences between TeamInfo and DA. First,
in Teawlufu, informadon access is user driven (users query and browse
the information base); in DA, access is system guided (the system asks
users questions and gives advice based on their answers). Each method has
its pluses and minuses. We decided on system-guided dialogues for one
main reason—to try to achieve compliance (i.e., to increase the chances
that each designer will be exposed to relevant information). Although we
remain convinced that system-guided dialogues are appropriate in some
use situations—most important, in checking that completed designs do not
violate any design norms—user feedback has shown that there are circum-
stances in which users need to be able to explore the information base
(e.g., early in design, users sometimes want to find out all the information
DA contains about a particular topic). Second, the representation of infor-

LIVING DESIGN MEMORY 25

mation in DA is more highly engineered. The DA knowledge engineer
and domain experts work together to clarify the structure of a domain,
selecting and arranging design attributes, determining understandable
questions, and creating useful advice. Finally, evolution in TeamlInfo is
mostly an individual process (group members send messages to TeamInfo
as they see fit); in DA, users, domain experts, customers, and the design
process team all can ask specific questions or suggest specific facts to be
added, propose new domains to be engineered, and identify problems and
solutions to be captured. All such suggestions go through the KB update-
and-maintenance process.

There have been several approaches to design memory organized
around design artifacts—for example, by Bill Mark and colleagues at
Lockheed (Mark et al., 1992) and by Gerhard Fischer and colleagues at the
University of Colorado (Fischer et al., 1992). They offer design environments
that include a library of existing design artifacts (formally represented) and
construction mechanisms (e.g., a palette of tool objects) for building new
designs. Prototype systems have been developed for software, network,
and architectural design. Designers construct artifacts by reusing and
modifying existing artifacts and adding new design components. Much
power is gained because artifacts are represented formally: Systems typi-
cally can assist designers by maintaining consistency of the design, sug-
gesting issues to consider, and helping to recover from breakdowns.
Fischer’s systems also provide design rationale, indexed by features of
artifacts and the design situation.

Recently, Fischer and colleagues (Fischer et al., 1992; Fischer, McCall,
Ostwald, Reeves, & Shipman, 1994) augmented their model to address the
issue of the evolution of design knowledge. The key phases of their model
are seeding, evolution, and reseeding. Initially, knowledge engineers work
with domain experts to develop a design environment containing an initial
“seed” of domain knowledge. Then, as designers use the system to design
artifacts, they can add new information as they work (e.g., they can add
notes that describe problems they encountered and how they solved
them), which forms the process of evolution. This information almost
certainly will be informal (e.g., textual notes) or perhaps semiformal (e.g.,
hypertext). Periodically, reseeding—the process in which knowledge engi-
neers analyze and reorganize the knowledge base~will be necessary. The
goal is to increase the formality of information added by designers (e.g.,
organizing textual information into a hypertext structure of issues, alterna-
tives, and arguments or even creating rules that can be used to critique a
design).

We view the design environment approach as complementary to ours
(in fact, we have done similar work ourselves; Terveen & Selfridge, 1994;
Terveen & Wroblewski, 1991). More specifically, the seeding-evolution—
reseeding model is quite similar in spirit to our living design memory
framework. However, there are several differences. First, in the ISCBU

26 TERVEEN, SELFRIDGE, LONG

development organization, design artifacts are English documents; thus,
an approach that required a formal representation of design artifacts was
not immediately possible. Designers use DA to get information about their
design situations, rather than to do design. However, we consider formal-
ization of design artifacts as a promising area for future work, and our
success to date increases the likelihood that this more radical innovation
will be considered. Second, the folklore knowledge we have captured is a
broader class of knowledge than that handled by these systems, and we
deliver it in different ways. Third, we go beyond these approaches to focus
on how any design memory must be integrated into organizational pro-
cesses—we view the design memory and organizational processes as mu-
tual resources that must be codesigned to ensure a design memory that is
living. In particular, although previous proposals for supporting evolution
have focused on the individual designer, in our approach, knowledge
evolution is a formal organizational process—it is neither fully automated
nor left up to individual designers. It is driven by feedback from users,
experts, and customers, but it is carried out by the DA knowledge engi-
neer. The motivation for this is our experience that systems must have
“owners” (in our case, the KB update-and-maintenance group), because, if
no one is responsible for the integrity of a system, it decays rapidly over
time. And, because our system is in daily use in a development organiza-
tion, quality control of information is crucial. Fourth, in contrast with
Fischer’s model, we cannot separate evolution and reseeding. The various
forms of feedback to the KB update-and-maintenance process can be seen
as evolutionary pressures. The DA knowledge engineer updates the design
knowledge base in response to these pressures, in a (potentially) continu-
ous process of reseeding. Finally, the ongoing involvement of research in
the project is a kind of “meta-reseeding”: In addition to the content and
structure of the design knowledge base, the very representational frame-
work and interface mechanisms might have to change based on user
feedback.

The final group memory system we consider is Answer Garden (Acker-
man, 1994; Ackerman & Malone, 1990). Answer Garden is intended to
capture recurring questions and their answers in a central database, thus
easing the task of information seeking, reducing the burden on experts,
and turning knowledge into an organizational asset. The database is de-
signed to grow “organically” in response to new user questions.

Answer Garden organizes information (in the prototype, about the X
Window system) in a branching network of multiple-choice questions and
answers. Users traverse the network by answering questions until they
reach the specific question that they need answered, where they receive an
answer. Answers might include text or graphical images, or they might be
“active nodes” that cause a certain action to be performed at run time (e.g.,
querying a database). If users come to the end of a path and do not find
their question, or they do not understand a question or answer, they can

LIVING DESIGN MEMORY 27

enter a new question. This question is routed automatically to the appro-
priate expert. When the expert answers the new question, the answer is
sent to the user, and the network is updated with the new question and
answer. Therefore, Answer Garden’s database evolves directly in response
to user questions. In addition, experts can analyze the history of users’
interactions with the system to determine whether the network needs to be
reorganized. For example, the authors (Ackerman, 1994; Ackerman &
Malone, 1990) suggested that, if very long paths are traversed frequently,
this might indicate that the network should be revised to place certain of
the questions higher in the tree.

Answer Garden is very similar to DA in its motivation, techniques used,
and accompanying analysis. We too are interested in capturing knowledge
that is maintained and disseminated informally—in capturing folklore, as
we call it. Our representation of design attribute hierarchies and our
interaction style are quite similar to those of Answer Garden. We too are
beginning to explore the use of “active nodes” to perform actions such as
sending e-mail or initiating execution of a tool. Ackerman and Malone’s
(1990) analysis of incentives for using Answer Garden is similar in the
issues it addresses and the answers it offers; for example, users might be
able to access authoritative information at any time, experts will spend less
time answering routine recurring questions, and organizations can hope
for more effective and efficient information management and dissemina-
tion. Both projects also found that relatively simple technologies can offer
significant organizational benefits, when combined properly and, as DA
emphasizes, integrated appropriately with organizational processes. In a
complicated, information-rich environment, simplicity and ease of use can
be crucial to the acceptance of a system. If a system poses few burdens on
its users (e.g., little training is required, documentation is unnecessary, and
sessions are brief), it can offer relatively modest benefits and yet still have
an attractive cost-benefit ratio.

There also are several differences between Answer Garden and DA.
We note what seems to us the three most significant. First, knowledge in
DA is somewhat more structured. Second, growth in Answer Garden is
largely bottom-up (i.e., driven by user questions). Although this has the
advantage that growth is in areas in which at least some users are inter-
ested, it has its limits in the world of DA. DA also must evolve as design
faults are discovered and analyzed, experts become ready to engineer
their domains, process improvement projects initiated by the design pro-
cess management team identify new information to be communicated to
designers, and downstream customers identify effects of design on their
processes—effects of which designers must be made aware. Thus, user
fccdback is only onc of thc cvolutionary foreccs to which DA rcopondo.
And the unit of evolution in DA tends to be much larger than a single
question and answer (e.g., a whole new domain might be added). Finally,
evolution in the Answer Garden is decentralized (each responsible expert

28 TERVEEN, SELFRIDGE, LONG

can add his or her answer to a new user question), whereas updates to DA
are handled by a central KB update-and-maintenance process. The DA
knowledge engineer is responsible for working with users, experts, and
customers to respond to their suggestions for modifications and updates to
the knowledge base. As we have mentioned before, this seems necessary
in order to try to preserve the integrity of the knowledge base. Further,
because growth can occur in fairly large chunks, the DA knowledge
engineer is responsible for managing each particular knowledge engineer-
ing project.

Figure 8 summarizes the points of comparison between DA and the
most closely related systems and approaches.

6. DISCUSSION
6.1. Lessons Learned

The primary lesson from this work is that technology and organiza-
tional processes are mutual, complementary resources. We have come to
see that many technological approaches to improving individual or group
work ignore a powerful resource, organizational processes. An
organization’s internal design, patterns of coordination, information flow,
and technology must be integrated into a coherent overall solution. We
integrated DA into the ISCBU design process using well-known quality
mechanisms. We use the existing design review process to ensure that
information in DA is modified as necessary. We defined a new process, the
KB update-and-maintenance process, to manage changes and additions to
the DA knowledge base. This process is defined in a formal process
description that specifies its customers, suppliers, inputs, and outputs.
Existing quality mechanisms, such as “opportunities for improvement”
and “quality improvement projects,” are used to produce feedback to DA.

Now we restate the lessons appearing in Section 1 and, for each,
summarize how the DA project illustrates the lesson:

* “The pragmatics of knowledge use are critical. Simply recording
facts is not enough,; issues such as where in the process knowledge is
to be accessed, how to access relevant knowledge from a large
information space, and how to allow for change also must be ad-
dressed for a knowledge management system to be successful.”

We identified particular points in the ISCBU design process at
which DA should be used. The currently deployed DA is best used
as an “after-the-fact” design checker with a system-guided dialogue
structure appropriate. User feedback has indicated that user-directed
exploration is more appropriate early in the design process, and our
new research prototype supports this. The design attribute hierar-
chies that structure information in DA serve as an index that enables

wa ayesaqrep

suonnjosai ‘sjusunire

spaford
I9[rewss ‘1910 10§

pUe sanssT mau ‘saATIEUIA)e ‘SInssT pue 1d3foxd uowr-gy Suruosear (s1gm)
astel syaquiawt y0aloxg Butsmouq 3xaradLAyg 4xauiadAy pamponng 10§ dnoi8 [ewss £q pasp) uBisop axmdey areuones uSissqg
asopdxa pue
s1sauBus afpajmouy 3asm01q ued §I13sN
£q Surmdnnsax 1XaJu0d uf IApE $OMLID {afeDRel JUAUIUOIIAUS
tasn Suimp suonwiouuy s1AfPp wsdAg uSisap-spemre puiog sad£j0101d snourep ufisaq swralsAs s Jayosiy
uonezuofajed safessow
[enuew pue satzo08ared pauyap [feUI-3 9AILNAX
orewone ‘ojuured j, Suiianb -dnoi8 ur paoeid sypuow g noqe pue 510)s—WA)sAs
0} Juas soSessow [reur- pue Suismoig sofessawireur-y 1o dnoif jews Aq pasn) uoneULIOJU] ojuureay,
sonsnes afesn
}IomIau Jo sisATeire apou SYIUCW JO IAqUINU
uadxa ‘suonsanb Auwe 0y Surdumf, sIamsue pue suonsanb e 10j sdnoif azis
135N MOU O) SIIMSUY ‘fes1aren umop-doJ, Jo yromjau Sumpuerg -wmipawr [e1aAds Aq pas)) 3J1ApE JAAIR(uIpIres) IPMSUY
ssasoxd
soueusjurew-pue-arepdn adfj0j01d sreak g jsourye
Aq parerpaw UORNOAD MaU U J[qe[TeA® o] A[rep uoneznreSio
{SWSTUYIaW PUe $32IMOS preas pue Susmolq SAMYOTEIATY yuawdoaasp
YoreqPad] SNOLIR A ‘fes1aaen umop-doj, anquye Wisaq afire] Aq pasn 321ApR JaANR(vd
uognoAy §5300Y uonejuasaiday as() panoday asodmy wiaysdg prorddywagsdg

‘u19)sds {rowew reuoprezyueSio oo pue y(Jo uosiredwo) ‘g 2ndig

29

30

TERVEEN, SELFRIDGE, LONG

designers to locate information relevant to their design tasks. The
design attribute hierarchy representation also has proved very useful
for ongoing knowledge acquisition, serving as a schema for the DA
knowledge engineer and domain experts to formulate knowledge. It
encourages the identification of important design states (i.e., those
that require designer action) and the particular advice relevant in
these states. We identified various sources of and mechanisms for
feedback to DA and instituted a process to respond to the feedback.
By having an “owner” for DA (the DA knowledge engineer) and for
each information item (the “knowledge owners”) we seek to ensure
the integrity of knowledge in DA.

“Addressing organizational problems while offering direct benefit to
individuals is key. Although we focus on helping an organization
manage its knowledge effectively—thus alleviating mainly problems
that manifest themselves on an organizational level (e.g., excessive
communication and coordination overhead, duplicated effort, long
product delivery times)-we know that it is individuals who imple-
ment new practices and use new technology, and they need proper
incentives to cooperate with such initiatives.”

DA does offer benefits to ISCBU. It captures design knowledge
that previously was managed and disseminated only informally, and
it has the potential to reduce software faults due to design. Individu-
als also receive benefits from DA. Developers do not have to wade
through large documents or spend time “blocked” while attempting
to locate someone who can help them with their problem, and they
can satisfy reviewers more easily if they show they have complied
with DA advice (or explain why they have not). DA is fairly simple
and quick to use; this is an important benefit in an already highly
complicated, information-rich work environment. It also means that
a fairly modest amount of usefulness is required for DA to have a
favorable cost-benefit ratio. Experts can reduce the amount of time
they spend answering routine questions and can ensure that import-
ant design norms are disseminated throughout the organization.
“Computer information delivery and computer mediation of human
collaboration must be tightly interwoven. Our approach integrates
the perspectives of cooperative problem solving ..., in which a computer
system assists a person in performing a task, and computer-supported
cooperative work, in which computer technology is used to mediate
collaboration among humans.”

DA captures expertise that is communicated to designers. It
also records the owner for each piece of advice; thus, designers
can be referred to specific experts when they have additional
questions. In some cases, advice consists only of pointers to
appropriate experts. Although not sufficient in the long term,
this itself is a significant improvement. First, it turns valuable and

LIVING DESIGN MEMORY 31

scarce networking knowledge into a public resource. It can decrease
the total amount (and thus cost) of communication while focusing
and making more efficient the communication that still is required.
Second, it offers a path to formalization of expertise: A next logical
step for experts to whom DA advice refers is to work with the DA
knowledge engineer to engineer their expertise.

* “A research-development partnership is a mutual learning process.
We discovered the limits of the ‘technology transfer’ metaphor;
instead of engaging in a discrete act of transfer, we engage in an
ongoing cycle of problem-solution coevolution that involves re-
search, rapid prototyping, user testing, deployment, and user feed-
back; issues such as access to expertise, knowledge of local culture
and technology, credibility, and ownership become crucial.”

For us, the most dramatic illustration of this lesson was the
reimplementation of the initial CLASSIC version of DA using DCS.
It showed the importance of local ownership and the use of local
technology. It illustrated that research and development members of
the design team have different knowledge that is difficult to articu-
late but that is deployed effectively on actual problems encountered
during design and use. We learned that researchers can achieve a
valuable result—a “running specification” for a new system—without
any of their specific technology going into general use. Finally, we
learned that many new, interesting research problems arise only
after a new technology is deployed. By participating in the develop-
ment of the new technology, we (Terveen & Selfridge) as researchers
gained credibility with ISCBU. As a result, we now have access to
the new research problems and guaranteed interest for new technol-
ogy that we develop—we have an ongoing relationship that we call a
living research project.

6.2. DA Status and Evaluation

DA has been part of the software design process at ISCBU since
October 1992. It has been used hundreds of times by dozens of developers
at the average rate of about 20 times a week. Figure 9 illustrates usage from
the week of October 1, 1992, to June 27, 1994 (except for Week 24, for
which usage statistics are not available).

DA collects general feedback at the end of each session and gives users
the opportunity to express detailed comments. DA has grown significantly
during its lifetime as more information is added to it. Figure 10 shows a
table of DA versions and some of the statistics collected.

After initial deployment and evaluation with primarily the asserts
knowledge, the amount of information in the tool was expanded dramati-
cally in Version 3.1. From then on, the amount of knowledge has contin-
ued to grow steadily. The degree of satisfaction of the users, at least as

32 TERVEEN, SELFRIDGE, LONG

Figure 3. Weekly use of DA.

50
40
% #of
20 times
‘ 1 used
ol il
Nl | 1l | | il
0 4 8 12 1820 24 28 32 38 40 44 48 52 56 60 64 68 72 76 80 84 88
weeks
Figure 10. DA growth and user evaluation statistics.
System Version
Metric 24 30 31 40 41 42
Number of advice items 7 10 214 244 246 259
Number of times used 85 95 169 522 224 329+
Percentage of users judging the interaction useful 38 42 61 61 69 60

Percentage of users judging the level of detail aboutright 41 46 65 66 69 72

measured by the gross statistics just mentioned, has remained in the 60%
range for the past four releases. The more detailed feedback has been used
to generate a set of requirements for the next version of the tool.

ISCBU determined the cost savings of this tool over the first year and
for each year thereafter. Because the value of the tool will be reflected in
better software designs, the benefits of which will be evident only over
time, the cost savings are only estimates. However, they are on the order
of $1 million a year. These savings are derived from hard data on the
number of faults found in the field and on the amount of money spent
correcting them and from soft data on the degree to which DA will reduce
these faults. (Because many process improvements are going on simulta-
neously within the organization, it is very difficult to assign credit to one
particular activity.) These cost savings, of course, must be balanced against
the cost of developing and maintaining the tool-in particular, against the
cost of funding the knowledge maintenance activity. This activity officially
is estimated at 30% of one technical head count; however, this figure might
be misleading because much of the process-improving activity would be
taking place anyway.

Perhaps even more important is the perception of ISCBU developers
and management that this knowledge delivery tool works. It has become
one of the primary mechanisms for fault reduction and process improve-

LIVING DESIGN MEMORY 33

ment. As shown in Figure 5, the tool now holds a significant amount of
knowledge of several different kinds, and requests for additional knowl-
edge come in regularly. Although issues of scale might arise as the amount
of knowledge increases, DA is currently perceived in a very positive
manner.

6.3. DA Limitations and Future Work

In this section, we review some of the problems with the current DA
implementation revealed by feedback from users and from the knowledge
base maintainer. We then describe a new graphical interface that we
developed to alleviate some of these problems. Here we list some of the
main problem areas of the current tool:

* Different types of knowledge. We have begun work with other AT&T
organizations to apply DA to their processes. They have expressed
the need to represent design knowledge expressed as checklists and
tables, to filter knowledge based on the design level specified by the
user, and to obtain a list of unresolved design issues.

* Different means to access the knowledge. Many users complained about
having to step down the question hierarchies in a fixed order. Others
commented that the structure of the dialogue was not clear. One
request was for some sort of search or browsing functionality. Some
users essentially said, “I simply want to find out what information
there is about subject X. Why do I have to answer a bunch of
questions?” Another request was that the tool should be able to
generate a list of all the questions it would ask. The users who made
this request said that they would like to use this as a checklist as they
worked on their designs, answering questions as they became able to
do so.

* Better “Help.” Users sometimes commented that they could not tell
what a question really meant until they answered it and considered
subsequent questions and advice. Certain terms were ambiguous or
unclear. Users wanted to be able to clarify the meaning of questions
and specific phrases within questions and advice.

o Better support for group use. Users who were part of a group working
on a large design commented that they were unable to answer all the
questions asked by DA. They suggested that it would be effective if
the notion of a DA session were extended to take on an incremental
and persistent character. The goal would be to allow each member
of the group to answer questions as he or she was able, with the
system maintaining a unified history of the questions and advice.

o System responses should be more than just textual advice. Some users
pointed out that, rather than telling them to contact a certain person
or read a certain document or run a certain tool, the system should

34 TERVEEN, SELFRIDGE, LONG

be able to initiate action on their behalf. For example, DA might be
able to compose an e-mail message, give the user a chance to edit the
message, and then send the message to the right person with a single
keystroke. Or, DA might be able to begin execution of a particular
tool, initializing it with data based on user responses to the system’s
questions.

We developed a new graphical interface to DA that responds to many of
these issues. It displays dialogue as a tree of typed nodes, reflecting the
structure of the underlying representation (see Figure 3). As the user
navigates the tree, questions are presented, answers collected, and advice
delivered in a separate window. The tree is highlighted as interaction
proceeds so that it is always evident where the user is in the dialogue. The
interface also provides different types of user-directed search and brows-
ing techniques, a notion of a “session” that the user can store and return to
at a later date or share with other collaborators, a better and more accurate
feedback mechanism, and the ability to generate nontextual advice and
take actions on behalf of the user.

The new interface also addresses some problems of knowledge mainte-
nance. Because the dialogue structure is explicitly represented as a tree
and supports string search, it is easy to find and make small changes in the
underlying text. More important, the tool provides a graphical editing
ability to create new dialogue domains, “splice” them into the complete
dialogue, and make changes in the existing structure (e.g., by collapsing a
subtree, merging it with another part of the tree, or creating a subtree
shared among different domains). We also have improved the ability to
save interaction traces, making it easy to determine what parts of the
dialogue are executed most often and what parts are relatively unvisited.
This capability, coupled with an improved mechanism for getting user
feedback, will greatly improve our ability to understand and modify the
overall dialogue structure.

7. CONCLUSIONS

To summarize, we carried out a research and development partnership
project that has resulted in a deployed design memory system. The system
is in daily use, enjoys significant organizational support, and continues to
grow—it is a living design memory. The primary lesson is the importance
of achieving synergy between technology and organizational processes,
but we have also learned important lessons about effective knowledge
delivery, focusing on benefits to individuals, mediating collaboration, and
carrying out collaborative design projects. But the story does not end
there. We are still in active collaboration with the development organiza-
tion and have designed a new interface that we hope will enhance the
usability and maintainability of DA, generate a next set of research

LIVING DESIGN MEMORY 35

challenges, and further our understanding of providing effective and living
organizational memory.

NOTES

Acknowledgments. We thank all the people at AT&T who helped make this
work possible, especially Mary Zajac, Ron Brachman, Mike Wish, and Eric
Sumner.

Authors’ Present Addresses. Loren G. Terveen, AT&T Bell Laboratories,
2C-401, 600 Mountain Avenue, Murray Hill, N] 07974. E-mail: terveene@
research.att.com; Peter G. Selfridge, AT&T Bell Laboratories, 2B-425, 600
Mountain Avenue, Murray Hill, NJ 07974. E-mail: pgs@research.att.com;
M. David Long, Cadre Technologies, Inc., Suite 800, 425 North Martingale Road,
Schaumburg, IL 60173. E-mail: dlong@cadre.com.

HCI Editorial Record. First manuscript received September 2, 1993. Revision
received March 23, 1994. Accepted by Ruven Brooks. Final manuscript received
July 12, 1994. — Editor

REFERENCES

Ackerman, M. S. (1994). Answer Garden: A tool for growing organizational memory.
Unpublished doctoral dissertation, Massachusetts Institute of Technology, Sloan
School of Management, Cambridge.

Ackerman, M. S., & Malone, T. W. (1990). Answer Garden: A tool for growing
organizational memory. Proceedings of the Conference on Office Information Systems,
31-39. New York: ACM.

Bailin, S. C., Moore, J. M., Bentz, R., & Bewtra, M. (1990). KAPTUR: Knowledge
acquisition for preservation of tradeoffs and underlying rationale. Proceedings of
the 5th annual Knowledge-Based Software Assistant Conference, 95~104. Liverpool,
NY: Rome Air Development Center.

Barstow, D. R. (1979). An experiment in knowledge-based automatic program-
ming. Artificial Intelligence, 12, 73-119.

Berlin, L. M., Jeffries, R., O’Day, V. L., Paepcke, A., & Wharton, C. (1993). Where
did you put it? Issues in the design and use of a group memory. Proceedings of the
INTERCHI ’93 Conference on Human Factors in Computer Systems, 23-30. New
York: ACM.

Borgida, A., Brachman, R. J., McGuinness, D. L, & Resnick, L. A. (1989). CLAS-
SIC: A structural data model for objects. Proceedings of the SIGMOD International
Conference on Management of Data, 59-67. New York: ACM.

Brachman, R. J., McGuinness, D. L., Patel-Schneider, P. F., Resnick, L. A., &
Borgida, A. (11990). Living with CLASSIC: When and how to use a KL-ONE-
like language. In J. Sowa (Ed.), Formal aspects of semantic networks (pp. 401-456).
Los Altos, CA: Morgan Kaufman.

Clancey, W. (1991). The frame of reference problem in the design of intelligent

36 TERVEEN, SELFRIDGE, LONG

machines. In K. VanLehn (Ed.), The twenty-second Carnegie Symposium on Cogni-
tion: Architectures for intelligence (pp. 357-424). Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc.

Colson, J. 8., & Prell, E. M. (1992). Total quality management for a large software
project. AT&T Technical Journal, 71(3), 48-56.

Conklin, E. J., & Burgess Yakemovic, S. C. (1991). A process-oriented approach to
design rationale. Human-Computer Interaction, 6, 357-391.

Curtis, B., Kellner, M. L, & Over, J. (1992). Process modeling. Communications of
the ACM, 35(9), 75-90.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field study of the software design
process for large systems. Communications of the ACM, 31, 1268-1287.

Ehn, P., & Kyng, M. (1991). Cardboard computers: Mocking-it-up or hands-on
the future. In J. Greenbaum & M. Kyng (Eds.), Design at work: Cooperative
design of computer systems (pp. 169-195). Hillsdale, NJ: Lawrence Erlbaum
Associates, Inc. »

Fischer, G. (1990). Communication requirements for cooperative problem solving
systems, International Journal of Information Systems, 15(1), 21-36.

Fischer, G., Grudin,]., Lemke, A. C.,, McCall, R., Ostwald,]J., & Shipman, F.
(1992). Supporting indirect, collaborative design with integrated knowledge-
based design environments. Human-Computer Interaction, 7, 281-314.

Fischer, G., Lemke, A. C., Mastaglio, T., & Morch, A. L. (1991). The role of
critiquing in cooperative problem solving. Transactions on Information Systems, 9,
123-151.

Fischer, G., Lemke, A. C., McCall, R., & Morch, A. L. (1991). Making argumenta-
tion serve design. Human-Computer Interaction, 6, 393-419.

Fischer, G., McCall, R., Ostwald, J., Reeves, B., & Shipman, F. M. (1994). Seeding,
evolutionary growth and reseeding: Supporting the incremental development of
design environments. Proceedings of the CHI 94 Conference on Human Factors in
Computer Systems, 292-298. New York: ACM.

Franke, D. W. (1991). Deriving and using descriptions of purpose. IEEE Expert,
6(2), 41-47.

Gaines, B. (1989). Social and cognitive processes in knowledge acquisition. Knowi-
edge Acquisition, 7(1), 39-58.

Greenbaum, ., & Kyng, M. (1991). Introduction: Situated design. In J. Greenbaum
& M. Kyng (Eds.), Design at work: Cooperative design of computer systems (pp. 1-24).
Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

Grudin, J. (1988). Why CSCW applications fail: Problems in the design and
evaluation of organizational interfaces. Proceedings of the CSCW *88 Conference on
Computer-Supported Cooperative Work, 85-93. New York: ACM.

Johnson, W. L., Feather, M. S., & Harris, D. H. (1991). The KBSA require-
ments/specification facet: ARIES. Proceedings of the 6th Knowledge-Based Sa}ware
Engineering Conference, 48-56. Los Alamitos, CA: IEEE.

Kant, E., Daube, F., MacGregor, W., & Wald, J. (1991). Scientific programming by
automated synthesis. In M. Lowry & R. McCartney (Eds.), Automating software
design (pp. 169-205). Menlo Park, CA: AAAI Press/MIT Press.

Krasner, H., Terrel,]., Linehan, A., Arnold, P,, & Ett, W. H. (1992). Lessons
learned from a software process modeling system. Communications of the ACM,
35(9), 91-100.

Kunz, W., & Rittel, H. (1970). Issues as elements of information systems (Working Paper

LIVING DESIGN MEMORY 37

131). Berkeley: University of California, Center for Planning and Development
Research.

Lave, J. (1988). Cognition in practice. Cambridge, England: Cambridge University
Press.

Mark, W., Tyler, S., McGuire,]., & Schlossberg, J. (1992). Commitment-based
software development. IEEE Transactions on Software Engineering, 18, 870-885.
McDermott, J. (1982). R1: A rule-based configurer of computer systems. Artificial

Intelligence, 19, 39-88.

Ramesh, B., & Dhar, V. (1991). Representation and maintenance of process
knowledge for large scale systems development. Proceedings of the 6th Knowledge-
Based Software Engineering Conference, 223-231. Los Alamitos, CA: IEEE.

Rich, C. H., & Waters, R. C. (1990). The programmer’s apprentice. Reading, MA:
Addison-Wesley.

Selfridge, P. G., Terveen, L. G., & Long, M. D. (1992). Managing design knowl-
edge to provide assistance to large-scale software development. Proceedings of the
7th Knowledge-Based Software Engineering Conference, 163-170. Los Alamitos, CA:
IEEE.

Shipman, F. M. (1993). Supporting knowledge-base evolution with incremental formal-
ization. Unpublished doctoral dissertation, University of Colorado, Department
of Computer Science, Boulder.

Shipman, F. M., & McCall, R. (1994). Supporting knowledge-base evolution with
incremental formalization. Proceedings of the CHI *94 Conference on Human Factors
in Computer Systems, 285-291. New York: ACM.

Shortliffe, E. H. (1976). Computer-based medical consultation: MYCIN. New York:
Elsevier.

Silverman, B. G. (1992). Human-computer collaboration. Human~Computer Inter-
action, 7, 165-196.

Smith, D. R. (1991). KIDS: A knowledge-based software development system. In
M. Lowry & R. McCartney (Eds.), Automating software design (pp. 483-514).
Menlo Park, CA: AAAI Press/MIT Press.

Suchman, L. A. (1983). Office procedures as practical action: Models of work and
system design. ACM Transactions on Office Information Systems, 1, 320-328.

Suchman, L. A. (1987). Plans and situated action. Cambridge, England: Cambridge
University Press.

Terveen, L. G. (1993). Intelligent systems as cooperative systems. International
Journal of Intelligent Systems, 3, 217-249.

Terveen, L. G. (in press). An overview of human-computer collaboration. Know!-
edge-Based Systems.

Terveen, L. G., & Selfridge, P. G. {1994). Intelligent assistance for software
construction: A case study. Proceedings of the 9th Knowledge-Based Software Engi-
neering Conference, 14-21. Los Alamitos, CA: IEEE.

Terveen, L. G., & Wroblewski, D. A. (1991). A tool for achieving consensus
in knowledge representation. Proceedings of the 9th National Conference on
Artificial Intelligence, AAAI-97, 74-79. Menlo Park, CA: AAAI Press/MIT
Press.

Winograd, T., & Flores, F. (1986). Understanding computers and cognition. Norwood,
NJ: Ablex.

