
Estimating Software Fault Content Before Coding

Stephen G. Eick$, Clive R. Loader~, M. David bng$, Lawrence G. Votta~, Scott Vander Wiel~

AT&T Bell Laboratories

600 Mountain Avenue

Murray Hill, New Jersey 07974~

1000 East Warrenville Road

Naperville, Illinois 60566$

ABSTRACT

The standard software development process consists of multiple
stages: requirements, &sig~ coding, system test, tirst office, and
finally delivery. An objective of this process is to minimize the
number of faults in delivered code. Root cause analysis shows

that many of the faults can be traced back to requirements or

design faults. As paxt of the software development process,
reviews are conducted to remove these faults before the

requirements or design document is passed on to the next step,
We have developed a method of instrumenting a review process
to record document faults dkcovered by reviewers during their

prepmation. Then, using statistical techniques related to
capture-recapture methods, we estimate the number of
undiscovered faults remaining in the document. The key idea to
our method is to look at how many common faults independent
reviewers tlnd and then extrapolate to the total number of faults.
We do not seed the document with artificial faults -no additionat

faults are introduced.

We have applied our methods to 13 review sessions (either

feature requirements or feature design) and are in the process of

a longitudinal study tracing these features. Our results to date

estimate that about 20% of the faults are undetected by reviews.
When the predicted number of undetected faults is greater than
209’o, consideration should be given to reworking design and/or
rereviewing the result. One surprising by-product of this study
is a quantification of the number of faults found by group
reviews. We find that only about 10% of the (dwcovered)
document faults are found at the review (90% are found in
preparation) and that the lead time to schedule a review is about

ten working days.

1. INTRODUCTION

An objective of all software projects is to minimize the number

of faults in delivered code. As some recent, well publiciz~
failures demonstrate [1] eliminating faults from software is a

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, orto republish, requires a fee and/or specific permission.

@ 1992 ACM 0-89791 -504-6/9210500- 00591.50

very important problem. One measure of software quality is the

number of residual faults.

The standard software &velopment process corwists of multiple
steps, finally resulting in a delivered system. As practiced at
AT&T, these steps consist of a feature definition, software
&sign, codiig, testing, and tinally delivery. At the feature

definition stage systems engineers formulate and define new

software features and produce a requirements document. Then

developers, working with the systems engineers, produce a
software design document describing the software architecture

and changes needed to implement the features. Next coders
implement the required changes. The new, enhanced software is
then submitted for feature and system reliability testing. Finally,
after testing, a beta version code is delivered to the fist
customers.

At each stage in the process a key objective is to minimize the
number of fattltsl passed on tu the next stage. For later stages,

systems test and first customer application, after the code has

been developed, there are well-known statistical techniques to
estimate the remaining softwwe fault density [2] and other

techniques to determine the optimal testing strategy [3], [4]. At

the earlier stages-feature definition, and softwme design-the

code has not yet been written so there is nothing yet to test. To
ensure that the requirements and design are of sufficient quality,
a review is conducted.

Reviews consist of 4 to 12 engineers who in preparation identify
paxts of the document that may contain design faults. The author
corrects these faults rmd the document is passed on to the next
stage unless the faults iwe so severe a second review is needed.

The process is designed to ensure that all possible faults are

caught and eliminated as erdy as possible.

Unfortunately, as the previously cited examples ahow,

occasionally faults pass through the process and end up as faults
in delivered software. As depicted in Figure 1, in a typicat

softswue process the design phase accounts for a significant net
addhion of faults in the development process (see [5] p. 353).2

1.

2

We use the tEEE convention of crmr, fautt, and faike fxont the fmne of

reference of the process step. Since we am tatking abeut the actual defect in the
quirements or design, we consistently choose to use the term xequimmmts or

design fault, mde.ss the context is unambiguous in which csse we witt u.% fautt.

In actuat practice, the situation can be be much mom complicated than

portrayed by this simple accounting model. From the frame of m.fezence of the

CODE process, me software error (a requirement fautt in rhe frame of

reference of the REQS process), can actually cause many software faults.

59

10

21

REQS 4
63

1 “~
9

6 CODE 34

12

P ,
TEST

42

34

F~ure 1: TYPICAL SOFTWARE DEVELOPMENT PROCESS

Vertical arrows going into box represent faultrdsize measure injected at that step. Vertical rmows out represent
faults/size removed at that step. Arrows pointing down and to the right represent fauhs/size beiig propagated from one
step to the next. Thus for the REQS, 10 fauIts/KLOC are generated, 6 faults/KLOC are removed, and 4 faults/KLOC
ar;passed on to DESIGN. -

Root cause analyses me performed to identify in which stages of
the process the faults originated and understand how to minimize

them in the future. One conclusion from these studies is that

some of the most insidious and expensive to repair faults have

root causes in the software design stage.

In this paper we describe a novel new technique to estimate the

number of residual faults at each stage in the software
development process. Our technique uses a class of statistical
methods known as capture-r=apture [6]. This technique is
most commonly used in the estimation of wildlife populations.
Other researchers (see [2], p. 114 for dscussion) have applied

capture-recapture methods to study software reliability but in a
very different context. Their approach was to seed software with

known faults, and then at system test they could use the number

of undetected seeded faults to estimate the number of remaining

faults. They found their estimates to be unreliable, because it is

difficult to seed the software with faults sirnilw to those

naturally occurring.

Our approach is different in that we introduce no artificial faults

into design documents. Instead, prior to each review meeting,
we assume that each reviewer has in&pendently3 searched for
faults in the design document. If most of the faults are found by
two or more reviewers, this intuitively suggests that there are
few undiscovered faults that could have been found by
additional reviewers. Conversely, if each reviewer identifies

disjoint sets of faults, this suggests additional reviewers would

find yet more faults. We use capture-recapture techniques to
translate these intuitive results into statistical estimates. This
behavior is portrayed by the simple two reviewer estimate given

by equation (8) in Section 3.

3. We are atso studying methods that atlow dependence brtween reviewers. This

woutd be. the case, for example, if rr.viewem collaborated or specialized in

piuticular areas.

To test our methods we have started a longihtdmal study of new
software features on a large (several million lines of code) real-

time telecommunications system. We have instrumented the

review process and collected data from 13 reviews for 9

different features. 4 of the reviews are for requirements

documents and 9 are for design documents. The 5 design

document reviews had 9 different review sessions, because 2
features were large enough to require multiple sessions. Table 1
contains a Wlef summary describing these reviews.

We intend to monitor the development of these features to relate

our pre-co& residual fault estimates with those actually
measured in subsequent process steps (standard practice is to

root cause every software fault back to process introduced and

reason(s) for the lack of detection earlier).

In the remainder of this paper we describe the instrumentation of

the development process (Section 2), the mathematical

formulation of the maximum likelihood estimate for the total
number of faults (Section 3), and initial data analysis (Section

4). We wnclude by observing that the number of faults predicted
using capture-recapture methods is consistent with developer
and tester intuition (Section 5). More definitive wnchtsions
await the completion of the full longitudinal stttdy.4

4. Unfortunately it is outside the scope of this paper te discuss our validation

plans in detsit. However, briefly, our plan fer this work has tbme phases.

Phase. 1 estsbtisks the ability to inatmment and memure the fautts d~ovsred

by reviewrm eccammicatly and with as tittle pmtass interfemnm ss p+sible.

Fmther, phase 1 appties some of the simple capture-recapture modets to review

data snd ass-es whether nxults look prmniaiig snd estimators behave

masenably. This paper summarizes the re.sutta of phaae 1. Phase 2 and phase 3

are both cumsntty in pmgrrss. Phase 2 is a set of experiments where two

reviews am. performed with the same xeqirementa or design, with/without

author repair and with the samekliffemmt teams. The intemion ia to understand

the repeatability and mprcducibfity of the measurement technique Further,

th-cst wok witt be done on capture-mcsptum modets atlowing crztain

forms of relaxation of the independence and constant pmbabitity assurnpticma.

Phase 3 is the longitudinal study where we follow the featurr.s dmmgh dwir

60

rFeature

Tag

ml

Fr4
FT5

FT6

Fr7

lT8

Review

Type

Requirement
R<uirement
Requirement
Requirement

Design

Design

Design

Design

Desitm

Featore Number of

Type sessions
New 1
New 1
New 1
New 1

Enhanced 1
Enhanced 1

New 1
New 4

New 2

Number of

Reviewera

8

9
6
10
6

5

8

8

6

Table 1: Summary Of Document Reviews In Study

2. INSI’RUMENTING THE REVIEW PROCESS

Before a formal document review mrkng, in the preparation
phase, each reviewer individually reads the document noting

faults that he or she believes should be resolved before the

document is approved and the feature developed further. At the
meeting a moderator, who is not the author, “walks” the group

through the document and the secretary records all identified

faults. At the end of the review there is a complete list of all
faults and a record of who found each fault in preparation?
There are two kinds of faults: those discovered in preparation
and those discovered at the meeting. The second type of fault
involves meeting synergy, that is multiple people working
together may discover problems that each individually missed.
If the document or code is of sufficiently high quality as decided
by the group, it is passed on to the next state after the author

addresses each fault. There are no further reviews and the

author’s resolution of each fault is recorded.

Typically there are between 4 and 12 reviewers, some of whom
are critical reviewers representing specific areas of expertise.

The meeting cannot take place without these critical reviewers.

An author must schedule the review meeting in advance. If the
document is completed early, the author will usually wait for the

previously scheduled review, since it is hard to arrange an earlier

review date. If the author completes late, the review must be

rescheduled-often weeks later due to the scheduling window.

These effects add time to the development schedule.

The output horn the design document review for feature lT7 is
shown in Table 2.6 For thii review there were 8 reviewers who

d~covered 24 faults. The margin totals are on the right and the

bottom. Fault 5, for example, was discovered, in preparation by
reviewers 1, 4 and 8. Faults 15, 19, 20, 21, 23, and 24 were

d~covered at the meeting. Reviewer 8 found 10 faults where as

reviewer 1 found 3 faults and reviewers 2 and 3 found none. Of
the 24 recorded faults, 5 (21%) were found by more than one
reviewer.

5.

6.

entire life cyclesnd observe whether tie m~surements made by esptum-

recapture ape with met cause analysis of alt software fautts after sevmal ye=s

of tie feature’s expesum m the field.

We performed msny earlier experiments te determin e the best way to reeord

the individual reviewer dsta. our cun-emt method adds <10% moxs time to tbe

recording of each fault as measwed by observers with stop watches. PLms exist
to impreve this further.

We use F17 as an ittustrative example te describe information recorded for att

reviews tisted ie TABLE 1.

Number of

Authors——
1
1
2
2

1

1

1

4

1——

In the review methodology we intentionally do not record the
names of individual reviewers. The reason is that we do not
want the results used for performance evaluations, since that.

might bias the process. For example. reviewers 2, 3, 5, and 6

found fewer faults than did the other reviewers. Possible

explanations for this involve training, experience, or that these

reviewers may specialize in particular areas for which there were

no faults to tind.

The faults found in requirements or design documents may not

all result in code faults. There have been few historical studies
trying to relate document faults to eventual code faults.
Establishing the exact nature of this relationship is difficult. Our
methodology is to ask each reviewer to indicate whether or not
he or she thinks the document fault will resuk in an eventual
code fault. The document faults indicated by an ‘*‘ in Table 2

rwe those that the reviewer thought would result in code faults.

Reviewers 4 and 8 think that most of the document faults will
result in code faults.

Table 3 shows how the author resolved each fault. For each

fault the author records the scope of the changes needed to

resolve the faul~ how long it took, and a non-exclusive
categorization of the kind and type of fault. The possible time
resolution values are c 1 hour and >=1 hour and the scopes are

‘local fix’ (FL), ‘global fix’ (IPG), and ‘no change’ (NC). Fault

5, for example, required more than 1 hour to fix and the changes
me global. The classification of faults into kinds and types

categories follow schemes discussed in [7] and [8]?

3. USING CAPTURE-RECAPTURE METHODS 7ro ESTIMATE

THE NUMBER OF RESIDUAL FAULTS

Capture-recapture models for ecology are described in [9], [10].

The basic model is as follows. There are some unknown number
of faults N in a document being reviewed by m reviewers
working independently. For the jth reviewer we let n, be the
number of faults he or she i&ntified in preparation, ~d p j be the
constant (unknown) probability that reviewer j discovers a given
fault. All faults are assumed to be equally likely to k ducovered

but individual reviewers have dtiferent skill levels as modeled

by thepj.8

7.

s.

The importance of this data may not be apparent te the reader. However, for

testing and retaxing the medet assumptions presented in section 3 it cculd be
crucial, since an individual’s ability to find faults may wry well depemd on

type and kind of requirements or design fautt present.Theseresults witt be
re.pmted in a later paper.

Work in progress includes relaxing the xeviewer independence and censtant

probability for a fault assumptions. The work develops in a similar fashim to

the ecological pqmlatien models which are outlined in [6],

61

Fault

1

2

3
4
5
6
7
8

9
10
11

12

13

14

15”
16
17

18
19-
20”

21-
22

23”
24”

Total:

“faults ~

Revwr 1

0
0
0
0
1

0
O*
1
0
1
0
0
()*
o
0
O*
O*
()*
()*
o
0
()*
()*
()*
3

scovered a

Revwr 2

0
0
0
0
()*
o
()*
o
0
0
0
0
()*
o
()*
()*
O*
()*
()*
()*
o
0
()*
o
0

the review

Revwr 3

0
0
0
0
0
0
()*
O*
o
0
0
0
0
0
0
()*
O*
O*
()*
()*
O*
()*
o
fJ*
o

eeting.

*will result in an eventual code fault

Revwr 4

0
0
@
o
1*
o
1*
&
1
1*

1
w
1*
1*

o
0$
&
(Y+
()*
0+
()*
()*
o
(-J*
7

Revwr 5
0
0
0
0
O*
o
1*
o
0
0
0
0
O*
o
0
0
O*
o
O*
()*
o
0
0
0
1

Revwr 6

0
0
0
0
0
0
O*
o
0
0
0
0

:
0
0
0
0
0
0
0
0
0
0
1

Revwr 7

0
1

1

0
0
0
()*
o
0
0
0
0
O*
o
0
0
()*
()*
()*
()*
()*
o
0
0
2

Revwr 8

0
0
1
1*

1
O*
()*

o
0
0
1
()*
1*

o
1*
1*
1*
()*
()*
()*
1*
()*
()*

10

Table 2: Design Review Faults for Feature FT7

Fault 1234567 89101112

Time cl <1 <1 c1 21 <1 21 <1 <1 <1 <1 <1
scope FL FL FL FL FG FL FG FL FL FL FL FL

Fault 13 14 15 16 17 18 19 20 21 22 23 24

Time <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

scope FL FL FL FL FL NC FL FL FL FG FL FL

Table 3: Author Resolution for Feature FT7

The observed data is a number n of faults and an nxm matrix X (N, 1 – Q) distribution, so
with the (i,j) * element Xij = O or 1, according to whether the jth

reviewer observed the ith fault (see Table 2). The likelihood is P(n) = ~~] (l-Q) ”Q~-”.

Total

1

1

1

1
3
1
2
1
1
2

1
1

2

2
0
1
1
1
0
0
0
1
0
0

(3)

then the probability of the obser&d data occ&ring, as a function
~,.)

of the unknown parameters. This probability can be expressed as Substituting (2) and (3) into (1) gives the likelihood function

P(n,X) = P(n) P(Xln) (1)

Let us first consider the conditional likelihood P(X In). Since we
assume faults are independent, we have

P(Xln) = fiP(Xi~* ‘--.XJ ~Xij21)
ial

“ H ~jxl, ~ ‘;l-%

= ~ j=’
1–Q

fippl-p;-”t

j= 1
=

(l-Q)n
(2)

Here, Q = fi (1 –p j) is the probability that a fault is not

L(n,pl,...,pm) = P(X,r2) =
[1# ,&PJ”(l‘Pj)N-”’. (4)

An intuitively appealing, but wrong, method of constructing a
likelihood is as follows. Since we have assumed reviewer
independence, the nj are independent Binomial (N,Pj) random
variables and a likelihood can be constructed as the product of

these binomial probabilities. The mistake here is that the nj are
not sufficient statistics for our model, and hence we have
discarded some information in the data.

Maximum likelihood estimates of N and p 1, p. we found
by maximizing (4). Differentiating (4) with respect to p j yields

,.Pj=;.

Substituting (5) into (4) and taking logs gives

(5)

j= 1

observed. The number of observed faults, n, has a Binomial

62

[1L.(N) = 10g ~ + ~tZjlOg?lj – NmlogN

m
j=l

+ ~ (N_nj)lOg(N–nj)
j=l

This can be maximized numerically over N2n.

(6)

An alternative estimator is based on maximizing the conditional
Iikeljjood P(X I n). This leads to a nonlinear equation to solve
for N.

[l+=E[l-4 (7)

While the estimate based on the full likelihood is preferable, the
conditional equation (7) does have natural appeal since each side

can be interpreted as an estimate of Q. In practice, the estimates

using either (6) or (7) are usually very sitnk.

The distribution of these estimates hasAbeen studied in [11]. In

p@icula, Darroch showed that N“x (N –N) has an asymptotic
normal distribution. However, we expect thii result to be heavily
dependent on model assumptions so we would not place too
much faith in confidence regions for N derived using this
dfitribution.

For the case m =2, observing that n=nl +nz–nlz where nlz is
the number of faults that both reviewers 1 and 2 discovered
equation (7) becomes

n1n2
i$=— (8)

n12

which is known to wildlife ecologists as the Lirtcoln-Peterson
estimator [12], [13]. Equation (8) is discussed both in the

introduction and in the discussion sections.

4. DATA ANALYSIS AND PRELIMINARY RESULTS

This section describes our data analysis methods and our results

to date after analyzing 13 review sessions. To illustrate analysis

techniques for individual reviews we use the experimental

results from the review of feature FW7. Recall that our primary

objective is to estimate the number of und~covered faults in the
document. If there are too many, the document may require a

revision, a second review, or both before passing it on to the
next phase. Other interesting questions involve how long it
takes the author to resolve them and the effect of group

reviewing.

Two important assumptions behind the likelihood equation (4)
are that the reviewers are statistically independent and faults are

probabilistically identical? In practice these assumptions may be
inaccurate because of specializatio~ collusion, and group

synergy. In a review, reviewers specializing in dtiferent areas

are intentionally chosen to ensure nothiig is overlooked. Since

each reviewer may focus on the parts of the document relating to
his or her area of expertise, specialization may result in fewer

common faults than would otherwise be expected. Collusion
occurs when multiple reviewers work together and results in
results in more common faults than would be expected. Finally,
due to group synergy, some faults are discovered at the meeting.
Group synergy is a measure of the effect of having multiple
people simultaneously working on the same problem.

9 Two xevwwers may review independently but ftnd no faults in cartmon

because they focused on dtiereat pats of the document. In this case fautts in

dtfferetrt parts of the documeat are protabdistically different.

4.1 Fault Identification Analysis

Recall that in our sample review, PT7, there were a total of 24

faults found. The left and center panels of Figure 2 are

histogram summaries of the marginal totals born Table 2. Of

the 24 total faults 13 were found by one reviewer, 4 were found

by a second, and 1 were found by a third. At the review 6 faults
were dwcovered, that is nc~ reviewer observed the fault in
preparation. The right panel of Figure 2 is a plot of the log-
likelihood (6) based on the overlap of reviewers finding the 18
faults discovered in preparation 10 for the revieW meeting. ‘e

likelihood timction is peaked at about 28 suggesting that only
about 4 fattks (ls~o) remain undiscovered. The actwd maximum
is slightly larger that 28, but 28 is the maxitniier over all
integers. These estimates have high variance but are more
precise than any other method known to the authors. We
discussed our results with the design process owner and the
reviewers. Based on experience, their intuition rdso suggested
that there were few remaining faults.

Across all 13 reviews our estimates of the number of undetected

faults ranged from O to 61 (O to 60%) as shown in Figure 3. The
number of remaining faults is the difference between the number
predicted ‘P’, and the total number found ‘S’. For most of the
documents we pre&ct between 5 and 10 undiscovered faults (10
to 30%).

4.2 Review Meeting Synergy

Scheduling a review meeting is a difficult task. The meetings me
often postponed because it is hard to find a two hour time slot

when 8 or more people are available, We observed reviews

beiig postponed several times over several weeks because of
schedule conflicts. The average time from the completion of

reviewer preparation until the review meeting could be
scheduled has been about 10 working days. Features pass
through multiple review~esign, codiig, testing, etc. Each
one of these reviews potentially adda schedule delay into the

process.

An alternative to the present documentation review meetings
would be for each reviewer to irdvidually give his or her faults

to the author. This would el”hninate the need to tind a meeting
time convenient to all reviewers. One measure of the value of

conducting a common review meeting is the number of

addhional faults that are discovered at the review. These
additional faults are due to reviewers taking another look at the
document as well as group synergy. However, many factors

other than group synergy contribute to the value of group
reviews. For example, without review meetings reviewers may
prepare less thoroughly.

We find a fi~. to 50% further reduction in the number of

undiscovered faults resulting horn document review meetings,

depending on the document quality. For most of the reviews the

reduction is less than 10qo. This is sho~ for example, in
Figure 3 where for most reviews the ‘S’ symbol is near the ‘F’.

In cases where many faults were found during the review
meeting we investigated further and inevitably found an
explanation. For example, for review FT7, 6 faults (zs~o of the
total number found) appear to have been d~covered during the
review. However, 5 of these were found by the author (not a
reviewer) prior to the review and therefore carmot be directly
attributed to the group review.ll

10. Jn our calctdatimr of the tiketilrood function we ignore faults discovered at the

meeting. Thii number is usuatly smatt, less than 1O%.

11. This is an iastnuneatatiott problem that we had trot observed in our triats for

desigairtg and testing the iastrumartatim. We have resolved this problarr by

63

REVIEWERS PER FAULT
FT7

,,

,

I,.,.,.,.:.,.,.:.,,,.,:.,,:.,.:...............
0~2345678

a Reb4ewws C4scwarhg Each FUJI
Told Numb Of Fatib. 24

FAULTS PER REVIEWER
FT7

,,

1234 5678

Retiw-

Log Likelihood vs. N

Figure 2 Different Fault-Reviewer Marginals and L&elihood Plot for F17

The histogram on the left shows how many reviewers observed each fault. The middle histogram shows the number of
faults that each reviewer observed. The plot on the right is the plot of the concentrated log-likelihood defined in

equation (6) and the vertical line tags the maximum likelihood estimate for the total number of&sign document faults.

5. DISCUSSION

This paper describes a new technique to estimate the number of
faults remaining in design documents after formal review

meetings. The idea is to apply capture-recapture statistical
techniques to the data collected at a document review meeting.

Based on the amount of overlap in faults found by various

reviewers we estimate the number of remaining faults. If the
estimate is large the document is a candidate for reworking.

In softwze engineering it is important to detect and correct

design faults as early as possible, particularly before coding.
The reason is that if the design is changed after coding, say at
the system test stage, large sections of the code may have to be
rewritten. Our approach, in contrast to other software reliability
engineering techniques [1], yields results snd fault predictions
at the design stage before code is written.

A current existing approach to measure document and design
quality is to compare the total number of faults found at a review
with historical norms. Previously a document would be reviewed
a second time if the number of faults found was significantly
different from the historical average. Too many faults were
taken as evidence of a poor document, while too few were taken
as evidence of a poor review. This approach implicitly assumes

re.cordins the authors’ discovered faults as we do the reviewers in Table 2.

Inspection of Figure 3 &plays large group synergy canpon.ats for Ft’12 and

F1’13. ‘he xeason is the same as for Ft7.

that variations among reviews iwe larger than variations among
documents. If this is not the case then two problems arise. Fmg

high quality documents must be re-reviewe~ thus discouraging
zero defect behavior. Second, low quality documents move

easily on to the coding stage. We are hopeful that the capture-

recapture approach will eliminate both of these problems.

Group reviews are valuable for motivatio~ training, d~cussion,
networking, etc, bu~ surprisingly, most faults are found in

preparation and not at the reviews. In the reviews we have
monitored so far, about 10%0 of the faults are discovered at the

review meeting, the other 90%0 are discovered in preparation.
Our original impression was that a large percentage of the faults
were discovered at the reviews. In the reviews we observed it

took an average of 10 working days to schedule the meeting
after all reviewers had completed their preparation.

The internal AT&T development community has been

responsive to applying our methods to ongoing plojects. One
particular project applied the technique to a design document

and found that our method predicted a large number of residual
faults. The reviewers decided that even though the document
met the historical condhions to be passed on to the next stage
that it nee&d more work and another reviewed. They discussed

64

FAULTS PER REVIEW

20&
B
~

P

100- P

s

P
$:

s
3 50- P

P
-i

P
~: P

If s
p

? E
p

P s
$ s

20- S P
...

~:
\

!: ,.;

F

f

lo-
1 I I I I I

2 4 6 8 10 12

Review (FTx)

Fimme 3: Pre&cted and Discovered Number of Faults”
For each of the 13 reviews we sho~ the predicted number of faults ‘P’, number found during preparation ‘F’, and total
number found including those discovered at the meeting ‘S’. We display the result in log scale. The review we have

been dkcussing is FT7.

this with project management and the document was reworked.

References

1.

2.

3.

4.

5.

6.

7.

John Schneidawind, “Software flaws take costly toll,” USA

Today, August 29, 1991.

John D. Muss, Anthony Iannino, and Kazuhira Okumoto,
Sof~are Reliability Measurement, Prediction,
Applicatwn. New York, New York McGraw-Hill Book

Company, 1987.

Y. Levendel, “Improving Quality Wkh A Manufacturing
Process,” IEEE So@are, pp. 13-25, March 1991.

Siddharta R. Dalal and Collin L. Mallows, “When Should
One Stop Testing Software?” Journal of the American
Statistical Association, vol. 83, no. 403, pp. 872-879,
September 1988.

Watts S. Humphery, Managing the Software Process,
Reading, Massachusetts: Addiion-Wesley Publishing Co.,

1989.

Kenneth H. Pollock, “Modeliig Capture, Recapture, and
Removal Statistics for Estimation of Demographic

Parameters for Fish and Wildlife Population Pas~

presen~ and Future,” Journal of the American Statistical
Association, vol. 86, no. 413, pp. 225-238, March 1991.

Victor R. Basili and Barry T. Perricone, “Software Errors
and Complexity an Empirical Investigation,”
Communications of the ACM, vol. 27, no. 1, pp. 42-52,

January 1984.

8.

9.

10.

11.

12.

13.

Dewayne E. Pemy and Michael Evangelism “An empirical

Study of Softwvue Interface Faults–-An Update,”

Proceedings of the Twentieth Annual Hawaii International
Conference On System Sciences, January 1987, Volume If,

113-126.

David T. Otis, Kenneth P. Burnham, Gary C. White, and
David R. An&rson, “Statistical Inference for Capture Data
On Closed Animal Populations,” Wildli)le Monographs,

no. 62, pp. 1-135, October 1978.

Gary C. White, David R. Anderson, Kenneth P. Burnham,
and David T. Otis, “Capture-Recapture and Removal

Methods for Sampling Closed Populations,” LQS Akunos
National Laboratory, L14 8787 -NERP, I-m Alamos, NM,

1982.

J. N. Darroch, “The Multiple-Recapturre Census 1:

Estimation of a closed populatio~” Biometrika, vol. 45,

pp. 343-359, 1958.

E. D. Le Cren, “A note on the history of mark-recapture
population estimates,” Journal of Animal Ecology, vol. 34,
pp. 453-454, 1965.

F. C. Lincoln, “Calculating waterfowl abundance on the
basis of banding returns,” U.S. Department of Agriculture
Circukir 118, 1930.

65

